ﻻ يوجد ملخص باللغة العربية
We suggest that a high proportion of brown dwarfs are formed by gravitational fragmentation of massive, extended discs around Sun-like stars. We argue that such discs should arise frequently, but should be observed infrequently, precisely because they fragment rapidly. By performing an ensemble of radiation-hydrodynamic simulations, we show that such discs typically fragment within a few thousand years to produce mainly brown dwarfs (including planetary-mass brown dwarfs) and low-mass hydrogen-burning stars. Subsequently most of the brown dwarfs are ejected by mutual interactions. We analyse the properties of these objects that form by disc fragmentation, and compare them with observations.
We suggest that a high proportion of brown dwarfs are formed by gravitational fragmentation of massive extended discs around Sun-like stars. Such discs should arise frequently, but should be observed infrequently, precisely because they fragment rapi
It is estimated that ~60% of all stars (including brown dwarfs) have masses below 0.2Msun. Currently, there is no consensus on how these objects form. I will briefly review the four main theories for the formation of low-mass objects: turbulent fragm
We conduct a pebble-driven planet population synthesis study to investigate the formation of planets around very low-mass stars and brown dwarfs, in the (sub)stellar mass range between $0.01 M_{odot}$ and $0.1 M_{odot}$. Based on the extrapolation
We report the discovery of an esdL3 subdwarf, ULAS J020858.62+020657.0, and a usdL4.5 subdwarf, ULAS J230711.01+014447.1. They were identified as L subdwarfs by optical spectra obtained with the Gran Telescopio Canarias, and followed up by optical-to
The origin of very low-mass stars (VLMS) and brown dwarfs (BDs) is still an unresolved topic of star formation. We here present numerical simulations of the formation of VLMS, BDs, and planet mass objects (planemos) resulting from the gravitational c