ﻻ يوجد ملخص باللغة العربية
By the first-principles electronic structure calculations, we find that the ground state of PbO-type tetragonal $alpha$-FeTe is in a bi-collinear antiferromagnetic state, in which the Fe local moments ($sim2.5mu_B$) are ordered ferromagnetically along a diagonal direction and antiferromagnetically along the other diagonal direction on the Fe square lattice. This bi-collinear order results from the interplay among the nearest, next nearest, and next next nearest neighbor superexchange interactions $J_1$, $J_2$, and $J_3$, mediated by Te $5p$-band. In contrast, the ground state of $alpha$-FeSe is in the collinear antiferromagnetic order, similar as in LaFeAsO and BaFe$_2$As$_2$.
We present a thorough theoretical assessment of the stability of non-collinear spin arrangements in small palladium clusters. We generally find that ferromagnetic order is always preferred, but that antiferromagnetic and non-collinear configurations
The structural properties of EuCo2As2 have been studied up to 35 GPa, through the use of x-ray diffraction in a diamond anvil cell at a synchrotron source. At ambient conditions, EuCo2As2 (I4/mmm) has a tetragonal lattice structure with a bulk modulu
From first-principles calculations, we have studied the electronic and magnetic structures of the ground state of LaOFeAs. The Fe spins are found to be collinear antiferromagnetic ordered, resulting from the interplay between the strong nearest and n
Traditional band theory of perfect crystalline solids often uses as input the structure deduced from diffraction experiments; when modeled by the minimal unit cell this often produces a spatially averaged model. The present study illustrates that thi
While ferromagnets are at the heart of daily life applications, their large magnetization and resulting energy cost for switching bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems