ﻻ يوجد ملخص باللغة العربية
The structural properties of EuCo2As2 have been studied up to 35 GPa, through the use of x-ray diffraction in a diamond anvil cell at a synchrotron source. At ambient conditions, EuCo2As2 (I4/mmm) has a tetragonal lattice structure with a bulk modulus of 48 +/-4 GPa. With the application of pressure, the a-axis exhibits negative compressibility with a concurrent sharp decrease in c-axis length. The anomalous compressibility of the a-axis continues until 4.7 GPa, at which point the structure undergoes a second-order phase transition to a collapsed tetragonal (CT) state with a bulk modulus of 111 +/- 2 GPa. We found a strong correlation between the ambient pressure volume of 122 parents of superconductors and the corresponding tetragonal to collapsed tetragonal phase transition pressures
We present high-energy x-ray diffraction data under applied pressures up to p = 29 GPa, neutron diffraction measurements up to p = 1.1 GPa, and electrical resistance measurements up to p = 5.9 GPa, on SrCo2As2. Our x-ray diffraction data demonstrate
By performing pressure simulations within density functional theory for the family of iron-based superconductors $Ae{}A$Fe$_4$As$_4$ with $Ae$ = Ca, Sr, Ba and $A$ = K, Rb, Cs we predict in these systems the appearance of two consecutive half-collaps
Single crystals of Ca(Fe1-xRux)2As2 (0<x<0.065) and Ca1-yLay(Fe0.973Ru0.027)2As2 (0<y<0.2) have been synthesized and studied with respect to their structural, electronic and magnetic properties. The partial substitution of Fe by Ru induces a decrease
Using non-resonant Fe K-beta x-ray emission spectroscopy, we reveal that Sr-doping of CaFe2As2 decouples the Fe moment from the volume collapse transition, yielding a collapsed-tetragonal, paramagnetic normal state out of which superconductivity deve
We report the temperature-pressure phase diagram of CaKFe$_4$As$_4$ established using high pressure electrical resistivity, magnetization and high energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magne