ترغب بنشر مسار تعليمي؟ اضغط هنا

Cryptic photosynthesis, Extrasolar planetary oxygen without a surface biological signature

47   0   0.0 ( 0 )
 نشر من قبل Lisa Kaltenegger
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On the Earth, photosynthetic organisms are responsible for the production of virtually all of the oxygen in the atmosphere. On the land, vegetation reflects in the visible, leading to a red edge that developed about 450 Myr ago and has been proposed as a biosignature for life on extrasolar planets. However, in many regions of the Earth, and particularly where surface conditions are extreme, for example in hot and cold deserts, photosynthetic organisms can be driven into and under substrates where light is still sufficient for photosynthesis. These communities exhibit no detectable surface spectral signature to indicate life. The same is true of the assemblages of photosynthetic organisms at more than a few metres depth in water bodies. These communities are widespread and dominate local photosynthetic productivity. We review known cryptic photosynthetic communities and their productivity. We link geomicrobiology with observational astronomy by calculating the disk-averaged spectra of cryptic habitats and identifying detectable features on an exoplanet dominated by such a biota. The hypothetical cryptic photosynthesis worlds discussed here are Earth-analogs that show detectable atmospheric biomarkers like our own planet, but do not exhibit a discernable biological surface feature in the disc-averaged spectrum.

قيم البحث

اقرأ أيضاً

109 - O. Absil 2010
In this paper, we review the various ways in which an infrared stellar interferometer can be used to perform direct detection of extrasolar planetary systems. We first review the techniques based on classical stellar interferometry, where (complex) v isibilities are measured, and then describe how higher dynamic ranges can be achieved with nulling interferometry. The application of nulling interferometry to the study of exozodiacal discs and extrasolar planets is then discussed and illustrated with a few examples.
The $textit{Kepler}$ satellite potentially provides the highest precision photometry of active galactic nuclei (AGN) available to investigate short-timescale optical variability. We targeted quasars from the Sloan Digital Sky Survey that lie in the f ields of view of the $textit{Kepler/K2}$ campaigns. Based on those observations, we report the discovery and properties of a previously unidentified instrumental signature in K2. Systematic errors in K2, beyond those due to the motion of the detector, plague our AGN and other faint-target, guest-observer science proposals. Weakly illuminated pixels are dominated by low frequency trends that are both non-astrophysical and correlated from object to object. A critical clue to understanding this instrumental noise is that different targets observed in the same channels of Campaign 8 (rear facing) and Campaign 16 (forward facing) had nearly identical light curves after time reversal of one of the campaigns. This observation strongly suggests that the underlying problem relates to the relative Sun-spacecraft-field orientation, which was approximately the same on day 1 of Campaign 8 as the last day of Campaign 16. Furthermore, we measure that the instrumental signature lags in time as a function of radius from the center of the detector, crossing channel boundaries. Systematics documented in this investigation are unlikely to be due to Moir{e} noise, rolling band, or pointing jitter. Instead this work strongly suggests temperature-dependent focus changes that are further subject to channel variations. Further characterization of this signature is crucial for rehabilitating K2 data for use in investigations of AGN light curves.
We place the first constraints on the obliquity of a planetary-mass companion (PMC) outside of the Solar System. Our target is the directly imaged system 2MASS J01225093-2439505 (2M0122), which consists of a 120 Myr 0.4 M_sun star hosting a 12-27 M_J companion at 50 AU. We constrain all three of the systems angular momentum vectors: how the companion spin axis, the stellar spin axis, and the orbit normal are inclined relative to our line of sight. To accomplish this, we measure projected rotation rates (vsini) for both the star and the companion using new near-infrared high-resolution spectra with NIRSPEC at Keck Observatory. We combine these with a new stellar photometric rotation period from TESS and a published companion rotation period from HST to obtain spin axis inclinations for both objects. We also fitted multiple epochs of astrometry, including a new observation with NIRC2/Keck, to measure 2M0122bs orbital inclination. The three line-of-sight inclinations place limits on the true de-projected companion obliquity and stellar obliquity. We find that while the stellar obliquity marginally prefers alignment, the companion obliquity tentatively favors misalignment. We evaluate possible origin scenarios. While collisions, secular spin-orbit resonances, and Kozai-Lidov oscillations are unlikely, formation by gravitational instability in a gravito-turbulent disk - the scenario favored for brown dwarf companions to stars - appears promising.
The light curve of 1SWASP J140747.93-394542.6, a $sim$16 Myr old star in the Sco-Cen OB association, underwent a complex series of deep eclipses that lasted 56 days, centered on April 2007. This light curve is interpreted as the transit of a giant ri ng system that is filling up a fraction of the Hill sphere of an unseen secondary companion, J1407b. We fit the light curve with a model of an azimuthally symmetric ring system, including spatial scales down to the temporal limit set by the stars diameter and relative velocity. The best ring model has 37 rings and extends out to a radius of 0.6 AU (90 million km), and the rings have an estimated total mass on the order of $100 M_{Moon}$. The ring system has one clearly defined gap at 0.4 AU (61 million km), which we hypothesize is being cleared out by a $< 0.8 M_{oplus}$ exosatellite orbiting around J1407b. This eclipse and model implies that we are seeing a circumplanetary disk undergoing a dynamic transition to an exosatellite-sculpted ring structure and is one of the first seen outside our Solar system.
83 - H. Barbier 2018
We study the phase curves for the planets of our Solar System; which, is considered as a non-compact planetary system. We focus on modeling the small variations of the light curve, based on the three photometric effects: reflection, ellipsoidal, and Doppler beaming. Theoretical predictions for these photometric variations are proposed, as if a hypothetical external observer would measure them. In contrast to similar studies of multi-planetary systems, the physical and geometrical parameters for each planet of the Solar System are well-known. Therefore, we can evaluate with accuracy the mathematical relations that shape the planetary light curves for an external fictitious observer. Our results suggest that in all the planets of study the ellipsoidal effect is very weak, while the Doppler beaming effect is in general dominant. In fact, the latter effect seems to be confirmed as the principal cause of variations of the light curves for the planets. This affirmation could not be definitive in Mercury or Venus where the Doppler beaming and the reflection effects have similar amplitudes. The obtained phase curves for the Solar System planets show interesting new features that have not been presented before, so the results presented here are relevant in their application to other non-compact systems, since they allow us to have an idea of what it is expected to find in their light curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا