ﻻ يوجد ملخص باللغة العربية
Generalization of the minority game to more than one market is considered. At each time step every agent chooses one of its strategies and acts on the market related to this strategy. If the payoff function allows for strong fluctuation of utility then market occupancies become inhomogeneous with preference given to this market where the fluctuation occured first. There exists a critical size of agent population above which agents on bigger market behave collectively. In this regime there always exists a history of decisions for which all agents on a bigger market react identically.
Minority game is a model of heterogeneous players who think inductively. In this game, each player chooses one out of two alternatives every turn and those who end up in the minority side wins. It is instructive to extend the minority game by allowin
We present a comprehensive study of utility function of the minority game in its efficient regime. We develop an effective description of state of the game. For the payoff function $g(x)=sgn (x)$ we explicitly represent the game as the Markov process
The relation between the spectral density of the QCD Dirac operator at nonzero baryon chemical potential and the chiral condensate is investigated. We use the analytical result for the eigenvalue density in the microscopic regime which shows oscillat
We study a variation of the minority game. There are N agents. Each has to choose between one of two alternatives everyday, and there is reward to each member of the smaller group. The agents cannot communicate with each other, but try to guess the c
The ultimate value of theories of the fundamental mechanisms comprising the asset price in financial systems will be reflected in the capacity of such theories to understand these systems. Although the models that explain the various states of financ