ﻻ يوجد ملخص باللغة العربية
A diagonal metric sum_{i=1}^n g_{ii} dx_i^2 is termed Guichard_k if sum_{i=1}^{n-k}g_{ii}-sum_{i=n-k+1}^n g_{ii}=0. A hypersurface in R^{n+1} is isothermic_k if it admits line of curvature co-ordinates such that its induced metric is Guichard_k. Isothermic_1 surfaces in R^3 are the classical isothermic surfaces in R^3. Both isothermic_k hypersurfaces in R^{n+1} and Guichard_k orthogonal co-ordinate systems on R^n are invariant under conformal transformations. A sequence of n isothermic_k hypersurfaces in R^{n+1} (Guichard_k orthogonal co-ordinate systems on R^n resp.) is called a Combescure sequence if the consecutive hypersurfaces (orthogonal co-ordinate systems resp.) are related by Combescure transformations. We give a correspondence between Combescure sequences of Guichard_k orthogonal co-ordinate systems on R^n and solutions of the O(2n-k,k)/O(n)xO(n-k,k)-system, and a correspondence between Combescure sequences of isothermic_k hypersurfaces in R^{n+1} and solutions of the O(2n+1-k,k)/O(n+1)xO(n-k,k)-system, both being integrable systems. Methods from soliton theory can therefore be used to construct Christoffel, Ribaucour, and Lie transforms, and to describe the moduli spaces of these geometric objects and their loop group symmetries.
Given a hypersurface $M$ of null scalar curvature in the unit sphere $mathbb{S}^n$, $nge 4$, such that its second fundamental form has rank greater than 2, we construct a singular scalar-flat hypersurface in $Rr^{n+1}$ as a normal graph over a trunca
We prove a theorem of Hadamard-Stoker type: a connected locally convex complete hypersurface immersed in $H^n times R$ (n>1), where $H^n$ is n-dimensional hyperbolic space, is embedded and homeomorphic either to the n-sphere or to $R^n$. In the latte
We find a class of minimal hypersurfaces H(k) as the zero level set of Pfaffians, resp. determinants of real 2k+2 dimensional antisymmetric matrices. While H(1) and H(2) are congruent to a 6-dimensional quadratic cone resp. Hsiangs cubic su(4) invari
Let $R^{n+1, n}$ be the vector space $R^{2n+1}$ equipped with the bilinear form $(X,Y)=X^t C_n Y$ of index $n$, where $C_n= sum_{i=1}^{2n+1} (-1)^{n+i-1} e_{i, 2n+2-i}$. A smooth $gamma: Rto R^{n+1,n}$ is {it isotropic} if $gamma, gamma_x, ldots, gam
In this paper, we study biharmonic hypersurfaces in a product of an Einstein space and a real line. We prove that a biharmonic hypersurface with constant mean curvature in such a product is either minimal or a vertical cylinder generalizing a result