ترغب بنشر مسار تعليمي؟ اضغط هنا

Teleportation-Based Controlled-NOT Gate for Fault-Tolerant Quantum Computation

245   0   0.0 ( 0 )
 نشر من قبل Yu-Ao Chen
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum computers promise dramatic speed ups for many computational tasks. For large-scale quantum computation however, the inevitable coupling of physical qubits to the noisy environment imposes a major challenge for a real-life implementation. A scheme introduced by Gottesmann and Chuang can help to overcome this difficulty by performing universal quantum gates in a fault-tolerant manner. Here, we report a non-trivial demonstration of this architecture by performing a teleportation-based two-qubit controlled-NOT gate through linear optics with a high-fidelity six-photon interferometer. The obtained results clearly prove the involved working principles and the entangling capability of the gate. Our experiment represents an important step towards the feasibility of realistic quantum computers and could trigger many further applications in linear optics quantum information processing.



قيم البحث

اقرأ أيضاً

Certain physical systems that one might consider for fault-tolerant quantum computing where qubits do not readily interact, for instance photons, are better suited for measurement-based quantum-computational protocols. Here we propose a measurement-b ased model for universal quantum computation that simulates the braiding and fusion of Majorana modes. To derive our model we develop a general framework that maps any scheme of fault-tolerant quantum computation with stabilizer codes into the measurement-based picture. As such, our framework gives an explicit way of producing fault-tolerant models of universal quantum computation with linear optics using protocols developed using the stabilizer formalism. Given the remarkable fault-tolerant properties that Majorana modes promise, the main example we present offers a robust and resource efficient proposal for photonic quantum computation.
Blind quantum computation (BQC) allows that a client who has limited quantum abilities can delegate quantum computation to a server who has advanced quantum technologies but learns nothing about the clients private information. For example, measureme nt-based model can guarantee privacy of clients inputs, quantum algorithms and outputs. However, it still remains a challenge to directly encrypt quantum algorithms in circuits model. To solve the problem, we propose GTUBQC, the first gate teleportation-based universal BQC protocol. Specifically, in this paper we consider a scenario where there are a trusted center responsible for preparing initial states, a client with the ability to perform X, Z, and two non-communicating servers conducting UBQC (universal BQC) and Bell measurements. GTUBQC ensures that all quantum outputs are at the clients side and the client only needs to detect whether servers honestly return correct measurement outcomes or not. In particular, GTUBQC can hide the universal quantum gates by encrypting the rotation angles, because arbitrary unitary operation can be decomposed into a combination of arbitrary rotation operators. Also, GTUBQC protocol can facilitate realizing UBQC in circuits, since GTUBQC uses one-time-pad to guarantee blindness. We prove the blindness and correctness of GTUBQC, and apply our approach to other types of computational tasks, such as quantum Fourier transform.
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
Topological error correcting codes, and particularly the surface code, currently provide the most feasible roadmap towards large-scale fault-tolerant quantum computation. As such, obtaining fast and flexible decoding algorithms for these codes, withi n the experimentally relevant context of faulty syndrome measurements, is of critical importance. In this work, we show that the problem of decoding such codes, in the full fault-tolerant setting, can be naturally reformulated as a process of repeated interactions between a decoding agent and a code environment, to which the machinery of reinforcement learning can be applied to obtain decoding agents. As a demonstration, by using deepQ learning, we obtain fast decoding agents for the surface code, for a variety of noise-models.
Continuous variable measurement-based quantum computation on cluster states has in recent years shown great potential for scalable, universal, and fault-tolerant quantum computation when combined with the Gottesman-Kitaev-Preskill (GKP) code and quan tum error correction. However, no complete fault-tolerant architecture exists that includes everything from cluster state generation with finite squeezing to gate implementations with realistic noise and error correction. In this work, we propose a simple architecture for the preparation of a cluster state in three dimensions in which gates by gate teleportation can be efficiently implemented. To accommodate scalability, we propose architectures that allow for both spatial and temporal multiplexing, with the temporal encoded version requiring as little as two squeezed light sources. Due to its three-dimensional structure, the architecture supports topological qubit error correction, while GKP error correction is efficiently realized within the architecture by teleportation. To validate fault-tolerance, the architecture is simulated using surface-GKP codes, including noise from GKP-states as well as gate noise caused by finite squeezing in the cluster state. We find a fault-tolerant squeezing threshold of 12.7 dB with room for further improvement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا