ﻻ يوجد ملخص باللغة العربية
Substructures, expected in cold dark matter haloes, have been proposed to explain the anomalous flux ratios in gravitational lenses. About 25% of lenses in the Cosmic Lens All-Sky Survey (CLASS) appear to have luminous satellites within ~ 5 kpc/h of the main lensing galaxies, which are usually at redshift z ~ 0.2-1. In this work we use the Millennium Simulation combined with galaxy catalogues from semi-analytical techniques to study the predicted frequency of such satellites in simulated haloes. The fraction of haloes that host bright satellites within the (projected) central regions is similar for red and blue hosts and is found to increase as a function of host halo mass and redshift. Specifically, at z = 1, about 11% of galaxy-sized haloes (with masses between 10^{12} M_sun/h and 10^{13} M_sun/h) host bright satellite galaxies within a projected radius of 5 kpc/h. This fraction increases to about 17% (25%) if we consider bright (all) satellites of only group-sized haloes (with masses between 10^{13} M_sun/h and 10^{14} M_sun/h). These results are roughly consistent with the fraction (~ 25%) of CLASS lensing galaxies observed to host luminous satellites. At z = 0, only ~ 3% of galaxy-sized haloes host bright satellite galaxies. The fraction rises to ~ 6%, (10%) if we consider bright (all) satellites of only group-sized haloes at z = 0. However, most of the satellites found in the inner regions are `orphan galaxies where the dark matter haloes have been completely stripped. Thus the agreement crucially depends on the true survival rate of these `orphan galaxies. We also discuss the effects of numerical resolution and cosmologies on our results.
Joint analyses of small-scale cosmological structure probes are relatively unexplored and promise to advance measurements of microphysical dark matter properties using heterogeneous data. Here, we present a multidimensional analysis of dark matter su
Observing the first galaxies formed during the reionisation epoch, i.e. approximately within the first billion years after the Big Bang, remains one of the challenges of contemporary astrophysics. Several efforts are being undertaken to search for su
Using high resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < M_V < -8) satellite galaxies. These simulations res
The flux anomalies in four-image gravitational lenses can be interpreted as evidence for the dark matter substructure predicted by cold dark matter (CDM) halo models. In principle, these flux anomalies could arise from alternate sources such as absor
We present multi-frequency VLA polarisation observations of nine gravitational lenses. The aim of these observations was to determine Faraday rotation measures (RM) for the individual lensed images, and to measure their continuum spectra over a wide range of frequencies.