ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter Constraints from a Unified Analysis of Strong Gravitational Lenses and Milky Way Satellite Galaxies

97   0   0.0 ( 0 )
 نشر من قبل Ethan Nadler
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Joint analyses of small-scale cosmological structure probes are relatively unexplored and promise to advance measurements of microphysical dark matter properties using heterogeneous data. Here, we present a multidimensional analysis of dark matter substructure using strong gravitational lenses and the Milky Way (MW) satellite galaxy population, accounting for degeneracies in model predictions and using covariances in the constraining power of these individual probes for the first time. We simultaneously infer the projected subhalo number density and the half-mode mass describing the suppression of the subhalo mass function in thermal relic warm dark matter (WDM), $M_{mathrm{hm}}$, using the semianalytic model $mathrm{texttt{Galacticus}}$ to connect the subhalo population inferred from MW satellite observations to the strong lensing host halo mass and redshift regime. Combining MW satellite and strong lensing posteriors in this parameter space yields $M_{mathrm{hm}}<10^{7.0} M_{mathrm{odot}}$ (WDM particle mass $m_{mathrm{WDM}}>9.7 mathrm{keV}$) at $95%$ confidence and disfavors $M_{mathrm{hm}}=10^{7.4} M_{mathrm{odot}}$ ($m_{mathrm{WDM}}=7.4 mathrm{keV}$) with a 20:1 marginal likelihood ratio, improving limits on $m_{mathrm{WDM}}$ set by the two methods independently by $sim 30%$. These results are marginalized over the line-of-sight contribution to the strong lensing signal, the mass of the MW host halo, and the efficiency of subhalo disruption due to baryons and are robust to differences in the disruption efficiency between the MW and strong lensing regimes at the $sim 10%$ level. This work paves the way for unified analyses of next-generation small-scale structure measurements covering a wide range of scales and redshifts.

قيم البحث

اقرأ أيضاً

We perform a comprehensive study of Milky Way (MW) satellite galaxies to constrain the fundamental properties of dark matter (DM). This analysis fully incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and mar ginalizes over uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk. Our results are consistent with the cold, collisionless DM paradigm and yield the strongest cosmological constraints to date on particle models of warm, interacting, and fuzzy dark matter. At $95%$ confidence, we report limits on (i) the mass of thermal relic warm DM, $m_{rm WDM} > 6.5 mathrm{keV}$ (free-streaming length, $lambda_{rm{fs}} lesssim 10,h^{-1} mathrm{kpc}$), (ii) the velocity-independent DM-proton scattering cross section, $sigma_{0} < 8.8times 10^{-29} mathrm{cm}^{2}$ for a $100 mathrm{MeV}$ DM particle mass (DM-proton coupling, $c_p lesssim (0.3 mathrm{GeV})^{-2}$), and (iii) the mass of fuzzy DM, $m_{phi}> 2.9 times 10^{-21} mathrm{eV}$ (de Broglie wavelength, $lambda_{rm{dB}} lesssim 0.5 mathrm{kpc}$). These constraints are complementary to other observational and laboratory constraints on DM properties.
In the thermal dark matter (DM) paradigm, primordial interactions between DM and Standard Model particles are responsible for the observed DM relic density. In Boehm et al. (2014), we showed that weak-strength interactions between DM and radiation (p hotons or neutrinos) can erase small-scale density fluctuations, leading to a suppression of the matter power spectrum compared to the collisionless cold DM (CDM) model. This results in fewer DM subhaloes within Milky Way-like DM haloes, implying a reduction in the abundance of satellite galaxies. Here we use very high resolution N-body simulations to measure the dynamics of these subhaloes. We find that when interactions are included, the largest subhaloes are less concentrated than their counterparts in the collisionless CDM model and have rotation curves that match observational data, providing a new solution to the too big to fail problem.
The satellite galaxies of the Milky Way (MW) are effective probes of the underlying dark matter (DM) substructure, which is sensitive to the nature of the DM particle. In particular, a class of DM models have a power spectrum cut-off on the mass scal e of dwarf galaxies and thus predict only small numbers of substructures below the cut-off mass. This makes the MW satellite system appealing to constrain the DM properties: feasible models must produce enough substructure to host the number of observed Galactic satellites. Here, we compare theoretical predictions of the abundance of DM substructure in thermal relic warm DM (WDM) models with estimates of the total satellite population of the MW. This produces conservative robust lower limits on the allowed mass, $m_mathrm{th}$, of the thermal relic WDM particle. As the abundance of satellite galaxies depends on the MW halo mass, we marginalize over the corresponding uncertainties and rule out $m_mathrm{th} leq 2.02, mathrm{keV}$ at 95 per cent confidence independently of assumptions about galaxy formation processes. Modelling some of these - in particular, the effect of reionization, which suppresses the formation of dwarf galaxies - strengthens our constraints on the DM properties and excludes models with $m_mathrm{th} leq 3.99, mathrm{keV}$ in our fiducial model. We also find that thermal relic models cannot produce enough satellites if the MW halo mass is $M_{200}leq 0.6times 10^{12}, mathrm{M_odot}$, which imposes a lower limit on the MW halo mass in CDM. We address several observational and theoretical uncertainties and discuss how improvements in these will strengthen the DM mass constraints.
116 - R.H. Sanders 2013
I show that the lensing masses of the SLACS sample of strong gravitational lenses are consistent with the stellar masses determined from population synthesis models using the Salpeter IMF. This is true in the context of both General Relativity and mo dified Newtonian dynamics, and is in agreement with the expectation of MOND that there should be little classical discrepancy within the high surface brightness regions probed by strong gravitational lensing. There is also dynamical evidence from this sample supporting the claim that the mass-to-light ratio of the stellar component increases with the velocity dispersion.
We derive joint constraints on the warm dark matter (WDM) half-mode scale by combining the analyses of a selection of astrophysical probes: strong gravitational lensing with extended sources, the Lyman-$alpha$ forest, and the number of luminous satel lites in the Milky Way. We derive an upper limit of $lambda_{rm hm}=0.089{rm~Mpc~h^{-1} }$ at the 95 per cent confidence level, which we show to be stable for a broad range of prior choices. Assuming a Planck cosmology and that WDM particles are thermal relics, this corresponds to an upper limit on the half-mode mass of $M_{rm hm }< 3 times 10^{7} {rm~M_{odot}~h^{-1}}$, and a lower limit on the particle mass of $m_{rm th }> 6.048 {rm~keV}$, both at the 95 per cent confidence level. We find that models with $lambda_{rm hm}> 0.223 {rm~Mpc~h^{-1} }$ (corresponding to $m_{rm th }> 2.552 {rm~keV}$ and $M_{rm hm }< 4.8 times 10^{8} {rm~M_{odot}~h^{-1}}$) are ruled out with respect to the maximum likelihood model by a factor $leq 1/20$. For lepton asymmetries $L_6>10$, we rule out the $7.1 {rm~keV}$ sterile neutrino dark matter model, which presents a possible explanation to the unidentified $3.55 {rm~keV}$ line in the Milky Way and clusters of galaxies. The inferred 95 percentiles suggest that we further rule out the ETHOS-4 model of self-interacting DM. Our results highlight the importance of extending the current constraints to lower half-mode scales. We address important sources of systematic errors and provide prospects for how the constraints of these probes can be improved upon in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا