ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bose-Einstein Condensate in a Uniform Light-induced Vector Potential

64   0   0.0 ( 0 )
 نشر من قبل Yu-Ju Lin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a two-photon dressing field to create an effective vector gauge potential for Bose-condensed Rb atoms in the F=1 hyperfine ground state. The dressed states in this Raman field are spin and momentum superpositions, and we adiabatically load the atoms into the lowest energy dressed state. The effective Hamiltonian of these neutral atoms is like that of charged particles in a uniform magnetic vector potential, whose magnitude is set by the strength and detuning of Raman coupling. The spin and momentum decomposition of the dressed states reveals the strength of the effective vector potential, and our measurements agree quantitatively with a simple single-particle model. While the uniform effective vector potential described here corresponds to zero magnetic field, our technique can be extended to non-uniform vector potentials, giving non-zero effective magnetic fields.

قيم البحث

اقرأ أيضاً

Bose-Einstein condensates have been produced in an optical box trap. This novel optical trap type has strong confinement in two directions comparable to that which is possible in an optical lattice, yet produces individual condensates rather than the thousands typical of a lattice. The box trap is integrated with single atom detection capability, paving the way for studies of quantum atom statistics.
117 - T. Sato , T. Ishiyama , T. Nikuni 2006
We study vortex lattice structures of a trapped Bose-Einstein condensate in a rotating lattice potential by numerically solving the time-dependent Gross-Pitaevskii equation. By rotating the lattice potential, we observe the transition from the Abriko sov vortex lattice to the pinned lattice. We investigate the transition of the vortex lattice structure by changing conditions such as angular velocity, intensity, and lattice constant of the rotating lattice potential.
71 - S. Tsuchiya , Y. Ohashi 2009
We investigate tunneling properties of Bogoliubov phonons in a Bose-Einstein condensate. We find the anomalous enhancement of the quasiparticle current $J_{rm q}$ carried by Bogoliubov phonons near a potential barrier, due to the supply of the excess current from the condensate. This effect leads to the increase of quasiparticle transmission probability in the low energy region found by Kovrizhin {it et al.}. We also show that the quasiparticle current twists the phase of the condensate wavefunction across the barrier, leading to a finite Josephson supercurrent $J_{rm s}$ through the barrier. This induced supercurrent flows in the opposite direction to the quasiparticle current so as to cancel out the enhancement of $J_{rm q}$ and conserve the total current $J=J_{rm q}+J_{rm s}$.
103 - T. Sato , T. Ishiyama , 2007
We study the vortex pinning effect in a Bose-Einstein Condensate in the presence of a rotating lattice potential by numerically solving the time-dependent Gross-Pitaevskii equation. We consider a triangular lattice potential created by blue-detuned l aser beams. By rotating the lattice potential, we observe a transition from the Abrikosov vortex lattice to the pinned vortex lattice. We investigate the transition of the vortex lattice structure by changing conditions such as angular velocity, strength, and lattice constant of a rotating lattice potential. Our simulation results clearly show that the lattice potential has a strong vortex pinning effect when the vortex density coincides with the density of the pinning points.
83 - J. Esteve , C. Gross , A. Weller 2008
Entanglement, a key feature of quantum mechanics, is a resource that allows the improvement of precision measurements beyond the conventional bound reachable by classical means. This is known as the standard quantum limit, already defining the accura cy of the best available sensors for various quantities such as time or position. Many of these sensors are interferometers in which the standard quantum limit can be overcome by feeding their two input ports with quantum-entangled states, in particular spin squeezed states. For atomic interferometers, Bose-Einstein condensates of ultracold atoms are considered good candidates to provide such states involving a large number of particles. In this letter, we demonstrate their experimental realization by splitting a condensate in a few parts using a lattice potential. Site resolved detection of the atoms allows the measurement of the conjugated variables atom number difference and relative phase. The observed fluctuations imply entanglement between the particles, a resource that would allow a precision gain of 3.8 dB over the standard quantum limit for interferometric measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا