ﻻ يوجد ملخص باللغة العربية
We study the vortex pinning effect in a Bose-Einstein Condensate in the presence of a rotating lattice potential by numerically solving the time-dependent Gross-Pitaevskii equation. We consider a triangular lattice potential created by blue-detuned laser beams. By rotating the lattice potential, we observe a transition from the Abrikosov vortex lattice to the pinned vortex lattice. We investigate the transition of the vortex lattice structure by changing conditions such as angular velocity, strength, and lattice constant of a rotating lattice potential. Our simulation results clearly show that the lattice potential has a strong vortex pinning effect when the vortex density coincides with the density of the pinning points.
We study vortex lattice structures of a trapped Bose-Einstein condensate in a rotating lattice potential by numerically solving the time-dependent Gross-Pitaevskii equation. By rotating the lattice potential, we observe the transition from the Abriko
We observe interlaced square vortex lattices in rotating two-component dilute-gas Bose-Einstein condensates (BEC). After preparing a hexagonal vortex lattice in a single-component BEC in an internal state $|1>$ of $^{87}$Rb atoms, we coherently trans
The speed of sound of a Bose-Einstein condensate in an optical lattice is studied both analytically and numerically in all three dimensions. Our investigation shows that the sound speed depends strongly on the strength of the lattice. In the one-dime
We calculate the hydrodynamic solutions for a dilute Bose-Einstein condensate with long-range dipolar interactions in a rotating, elliptical harmonic trap, and analyse their dynamical stability. The static solutions and their regimes of instability v
In contrast to charge vortices in a superfluid, spin vortices in a ferromagnetic condensate move inertially (if the condensate has zero magnetization along an axis). The mass of spin vortices depends on the spin-dependent interactions, and can be mea