ﻻ يوجد ملخص باللغة العربية
J. Nash proved that the geometry of any Riemannian manifold M imposes no restrictions to be embedded isometrically into a (fixed) ball B_{mathbb{R}^{N}}(1) of the Euclidean space R^N. However, the geometry of M appears, to some extent, imposing restrictions on the mean curvature vector of the embedding.
We explore the relation among volume, curvature and properness of a $m$-dimensional isometric immersion in a Riemannian manifold. We show that, when the $L^p$-norm of the mean curvature vector is bounded for some $m leq pleq infty$, and the ambient m
We prove a rigidity theorem that shows that, under many circumstances, quasi-isometric embeddings of equal rank, higher rank symmetric spaces are close to isometric embeddings. We also produce some surprising examples of quasi-isometric embeddings of
In 1968, Simons introduced the concept of index for hypersurfaces immersed into the Euclidean sphere S^{n+1}. Intuitively, the index measures the number of independent directions in which a given hypersurface fails to minimize area. The earliest resu
In this paper, we investigate geometric conditions for isometric immersions with positive index of relative nullity to be cylinders. There is an abundance of noncylindrical $n$-dimensional minimal submanifolds with index of relative nullity $n-2$, fu
In the last 15 years, White and Huisken-Sinestrari developed a far-reaching structure theory for the mean curvature flow of mean convex hypersurfaces. Their papers provide a package of estimates and structural results that yield a precise description