ترغب بنشر مسار تعليمي؟ اضغط هنا

On the mean curvature of Nash isometric embeddings

77   0   0.0 ( 0 )
 نشر من قبل Greg\\'orio Pacelli F. Bessa
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

J. Nash proved that the geometry of any Riemannian manifold M imposes no restrictions to be embedded isometrically into a (fixed) ball B_{mathbb{R}^{N}}(1) of the Euclidean space R^N. However, the geometry of M appears, to some extent, imposing restrictions on the mean curvature vector of the embedding.

قيم البحث

اقرأ أيضاً

We explore the relation among volume, curvature and properness of a $m$-dimensional isometric immersion in a Riemannian manifold. We show that, when the $L^p$-norm of the mean curvature vector is bounded for some $m leq pleq infty$, and the ambient m anifold is a Riemannian manifold with bounded geometry, properness is equivalent to the finiteness of the volume of extrinsic balls. We also relate the total absolute curvature of a surface isometrically immersed in a Riemannian manifold with its properness. Finally, we relate the curvature and the topology of a complete and non-compact $2$-Riemannian manifold $M$ with non-positive Gaussian curvature and finite topology, using the study of the focal points of the transverse Jacobi fields to a geodesic ray in $M$ . In particular, we have explored the relation between the minimal focal distance of a geodesic ray and the total curvature of an end containing that geodesic ray.
We prove a rigidity theorem that shows that, under many circumstances, quasi-isometric embeddings of equal rank, higher rank symmetric spaces are close to isometric embeddings. We also produce some surprising examples of quasi-isometric embeddings of higher rank symmetric spaces. In particular, we produce embeddings of $SL(n,mathbb R)$ into $Sp(2(n-1),mathbb R)$ when no isometric embeddings exist. A key ingredient in our proofs of rigidity results is a direct generalization of the Mostow-Morse Lemma in higher rank. Typically this lemma is replaced by the quasi-flat theorem which says that maximal quasi-flat is within bounded distance of a finite union of flats. We improve this by showing that the quasi-flat is in fact flat off of a subset of codimension $2$.
In 1968, Simons introduced the concept of index for hypersurfaces immersed into the Euclidean sphere S^{n+1}. Intuitively, the index measures the number of independent directions in which a given hypersurface fails to minimize area. The earliest resu lts regarding the index focused on the case of minimal hypersurfaces. Many such results established lower bounds for the index. More recently, however, mathematicians have generalized these results to hypersurfaces with constant mean curvature. In this paper, we consider hypersurfaces of constant mean curvature immersed into the sphere and give lower bounds for the index under new assumptions about the immersed manifold.
In this paper, we investigate geometric conditions for isometric immersions with positive index of relative nullity to be cylinders. There is an abundance of noncylindrical $n$-dimensional minimal submanifolds with index of relative nullity $n-2$, fu lly described by Dajczer and Florit cite{DF2} in terms of a certain class of elliptic surfaces. Opposed to this, we prove that nonminimal $n$-dimensional submanifolds in space forms of any codimension are locally cylinders provided that they carry a totally geodesic distribution of rank $n-2geq2,$ which is contained in the relative nullity distribution, such that the length of the mean curvature vector field is constant along each leaf. The case of dimension $n=3$ turns out to be special. We show that there exist elliptic three-dimensional submanifolds in spheres satisfying the above properties. In fact, we provide a parametrization of three-dimensional submanifolds as unit tangent bundles of minimal surfaces in the Euclidean space whose first curvature ellipse is nowhere a circle and its second one is everywhere a circle. Moreover, we provide several applications to submanifolds whose mean curvature vector field has constant length, a much weaker condition than being parallel.
In the last 15 years, White and Huisken-Sinestrari developed a far-reaching structure theory for the mean curvature flow of mean convex hypersurfaces. Their papers provide a package of estimates and structural results that yield a precise description of singularities and of high curvature regions in a mean convex flow. In the present paper, we give a new treatment of the theory of mean convex (and k-convex) flows. This includes: (1) an estimate for derivatives of curvatures, (2) a convexity estimate, (3) a cylindrical estimate, (4) a global convergence theorem, (5) a structure theorem for ancient solutions, and (6) a partial regularity theorem. Our new proofs are both more elementary and substantially shorter than the original arguments. Our estimates are local and universal. A key ingredient in our new approach is the new non- collapsing result of Andrews. Some parts are also inspired by the work of Perelman. In a forthcoming paper, we will give a new construction of mean curvature flow with surgery based on the theorems established in the present paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا