ترغب بنشر مسار تعليمي؟ اضغط هنا

A linear filter to reconstruct the ISW effect from CMB and LSS observations

55   0   0.0 ( 0 )
 نشر من قبل Rita Belen Barreiro
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The extraction of a signal from some observational data sets that contain different contaminant emissions, often at a greater level than the signal itself, is a common problem in Astrophysics and Cosmology. The signal can be recovered, for instance, using a simple Wiener filter. However, in certain cases, additional information may also be available, such as a second observation which correlates to a certain level with the sought signal. In order to improve the quality of the reconstruction, it would be useful to include as well this additional information. Under these circumstances, we have constructed a linear filter, the linear covariance-based filter, that extracts the signal from the data but takes also into account the correlation with the second observation. To illustrate the performance of the method, we present a simple application to reconstruct the so-called Integrated Sachs-Wolfe effect from simulated observations of the Cosmic Microwave Background and of catalogues of galaxies.

قيم البحث

اقرأ أيضاً

We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so -called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in orderto characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, $Gmull 10^{-7}$,, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.
83 - N. Taburet 2010
If Dark Energy introduces an acceleration in the universal expansion then large scale gravitational potential wells should be shrinking, causing a blueshift in the CMB photons that cross such structures (Integrated Sachs-Wolfe effect, [ISW]). Galaxy clusters are known to probe those potential wells. In these objects, CMB photons also experience inverse Compton scattering off the hot electrons of the intra-cluster medium, and this results in a distortion with a characteristic spectral signature of the CMB spectrum (the so-called thermal Sunyaev-Zeldovich effect, [tSZ]). Since both the ISW and the tSZ effects take place in the same potential wells, they must be spatially correlated. We present how this cross ISW-tSZ signal can be detected in a CMB-data contained way by using the frequency dependence of the tSZ effect in multi frequency CMB experiments like {it Planck}, {em without} requiring the use of external large scale structure tracers data. We find that by masking low redshift clusters, the shot noise level decreases significantly, boosting the signal to noise ratio of the ISW--tSZ cross correlation. We also find that galactic and extragalactic dust residuals must be kept at or below the level of ~0.04 muK^2 at l=10, a limit that is a factor of a few below {it Planck}s expectations for foreground subtraction. If this is achieved, CMB observations of the ISW-tSZ cross correlation should also provide an independent probe for the existence of Dark Energy and the amplitude of density perturbations.
We show that, in the context of patchy reionisation, an accurate description of the angular power spectrum of the kinetic Sunyaev-Zeldovich (kSZ) effect is not possible with simple scaling relations between the amplitude of the spectrum and global pa rameters, such as the reionisation midpoint and its duration. We introduce a new parameterisation of this spectrum, based on a novel description of the power spectrum of the free electrons density contrast Pee (k,z) in terms of the reionisation global history and morphology. We directly relate features of the spectrum to the typical ionised bubble size at different stages in the process and, subsequently, to the angular scale at which the patchy kSZ power spectrum reaches its maximum. We successfully calibrated our results on a custom set of advanced radiative hydrodynamical simulations and later found our parameterisation to be a valid description of a wide range of other simulations and, therefore, reionisation physics. In the end, and as long as the global reionisation history is known, two parameters are sufficient to derive the angular power spectrum. Such an innovative framework applied to cosmic microwave background data and combined with 21cm intensity mapping will allow a first consistent detection of the amplitude and shape of the patchy kSZ signal, giving in turn access to the physics of early light sources.
At its core, Quantum Mechanics is a theory developed to describe fundamental observations in the spectroscopy of solids and gases. Despite these practical roots, however, quantum theory is infamous for being highly counterintuitive, largely due to it s intrinsically probabilistic nature. Neural networks have recently emerged as a powerful tool that can extract non-trivial correlations in vast datasets. They routinely outperform state-of-the-art techniques in language translation, medical diagnosis and image recognition. It remains to be seen if neural networks can be trained to predict stochastic quantum evolution without a priori specifying the rules of quantum theory. Here, we demonstrate that a recurrent neural network can be trained in real time to infer the individual quantum trajectories associated with the evolution of a superconducting qubit under unitary evolution, decoherence and continuous measurement from raw observations only. The network extracts the system Hamiltonian, measurement operators and physical parameters. It is also able to perform tomography of an unknown initial state without any prior calibration. This method has potential to greatly simplify and enhance tasks in quantum systems such as noise characterization, parameter estimation, feedback and optimization of quantum control.
Any Dark Energy (DE) or Modified Gravity (MG) model that deviates from a cosmological constant requires a consistent treatment of its perturbations, which can be described in terms of an effective entropy perturbation and an anisotropic stress. We ha ve considered a recently proposed generic parameterisation of DE/MG perturbations and compared it to data from the Planck satellite and six galaxy catalogues, including temperature-galaxy (Tg), CMB lensing-galaxy and galaxy-galaxy (gg) correlations. Combining these observables of structure formation with tests of the background expansion allows us to investigate the properties of DE/MG both at the background and the perturbative level. Our constraints on DE/MG are mostly in agreement with the cosmological constant paradigm, while we also find that the constraint on the equation of state w (assumed to be constant) depends on the model assumed for the perturbation evolution. We obtain $w=-0.92^{+0.20}_{-0.16}$ (95% CL; CMB+gg+Tg) in the entropy perturbation scenario; in the anisotropic stress case the result is $w=-0.86^{+0.17}_{-0.16}$. Including the lensing correlations shifts the results towards higher values of w. If we include a prior on the expansion history from recent Baryon Acoustic Oscillations (BAO) measurements, we find that the constraints tighten closely around $w=-1$, making it impossible to measure any DE/MG perturbation evolution parameters. If, however, upcoming observations from surveys like DES, Euclid or LSST show indications for a deviation from a cosmological constant, our formalism will be a useful tool towards model selection in the dark sector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا