ترغب بنشر مسار تعليمي؟ اضغط هنا

Noisy defects in a doped Mott insulator

118   0   0.0 ( 0 )
 نشر من قبل Freek Massee
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Detailed understanding of the role of single dopant atoms in host materials has been crucial for the continuing miniaturization in the semiconductor industry as local charging and trapping of electrons can completely change the behaviour of a device. Similarly, as dopants can turn a Mott insulator into a high temperature superconductor, their electronic behaviour at the atomic scale is of much interest. Due to limited time resolution of conventional scanning tunnelling microscopes, most atomic scale studies in these systems focussed on the time averaged effect of dopants on the electronic structure. Here, by using atomic scale shot-noise measurements in the doped Mott insulator Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+x}$, we visualize sub-nanometer sized objects where remarkable dynamics leads to an enhancement of the tunnelling current noise by at least an order of magnitude. From the position, current and energy dependence we argue that these defects are oxygen dopant atoms that were unaccounted for in previous scanning probe studies, whose local environment leads to charge dynamics that strongly affect the tunnelling mechanism. The unconventional behaviour of these dopants opens up the possibility to dynamically control doping at the atomic scale, enabling the direct visualization of the effect of local charging on e.g. high T$_{text{c}}$ superconductivity.

قيم البحث

اقرأ أيضاً

Magic-angle twisted bilayer graphene has recently become a thriving material platform realizing correlated electron phenomena taking place within its topological flat bands. Several numerical and analytical methods have been applied to understand the correlated phases therein, revealing some similarity with the quantum Hall physics. In this work, we provide a Mott-Hubbard perspective for the TBG system. Employing the large-scale density matrix renormalization group on the lattice model containing the projected Coulomb interactions only, we identify a first-order quantum phase transition between the insulating stripe phase and the quantum anomalous Hall state with the Chern number of $pm 1$. Our results not only shed light on the mechanism of the quantum anomalous Hall state discovered at three-quarters filling, but also provide an example of the topological Mott insulator, i.e., the quantum anomalous Hall state in the strong coupling limit.
We present a computationally efficient method to obtain the spectral function of bulk systems in the framework of steady-state density functional theory (i-DFT) using an idealized Scanning Tunneling Microscope (STM) setup. We calculate the current th rough the STM tip and then extract the spectral function from the finite-bias differential conductance. The fictitious non-interacting system of i-DFT features an exchange-correlation (xc) contribution to the bias which guarantees the same current as in the true interacting system. Exact properties of the xc bias are established using Fermi-liquid theory and subsequently implemented to construct approximations for the Hubbard model. We show for two different lattice structures that the metal-insulator transition is captured by i-DFT.
We study the nonequilibrium phase diagram of long-lived photo-doped states in the one-dimensional $U$-$V$ Hubbard model, where $eta$-pairing, spin density wave and charge density wave (CDW) phases are found. The photo-doped states are studied using a n effective model obtained by a Schrieffer-Wolff transformation combined with separate chemical potentials for the approximately conserved pseudoparticle excitations, leading to a generalized Gibbs ensemble type description. These photo-doped states are characterized by gapless ($eta$-paring) and gapped (CDW) features in the nonequilibrium spectra. For small $V$, the $eta$-pairing correlations dominate over a wide doping range even when the SU$_c(2)$ symmetry that protects $eta$-pairing in the pure Hubbard model is absent. With increasing $V$, the CDW correlations take over in a wide doping range and are strong relative to the chemically doped case. We attribute the strong CDW correlations to the competition between intra- and inter-species repulsion and the one-dimensional configuration. Our results show that photo-doped strongly correlated systems exhibit different phases than conventional semiconductors.
We report a La2CuO4-like interlayer antiferromagnetic order in Sr2IrO4 films with large orthorhombic distortion (> 1.5%). The biaxial lattice strain in epitaxial heterostructures of Sr2IrO4/Ca3Ru2O7 lowers the crystal symmetry of Sr2IrO4 from tetrago nal (C4) to orthorhombic (C2), guiding the Ir 5d Jeff = 1/2 pseudospin moment parallel to the elongated b-axis via magnetic anisotropy. From resonant X-ray scattering experiments, we observed an antiferromagnetic order in the orthorhombic Sr2IrO4 film whose interlayer stacking pattern is inverted from that of the tetragonal Sr2IrO4 crystal. This interlayer stacking is similar to that of the orthorhombic La2CuO4, implying that the asymmetric interlayer exchange interaction along a and b-directions exceeds the anisotropic interlayer pseudo-dipolar interaction. Our result suggests that strain-induced distortion can provide a delicate knob for tuning the long-range magnetic order in quasi-two-dimensional systems by evoking the competition between the interlayer exchange coupling and the pseudo-dipolar interaction.
Metal-to-insulator transitions (MIT) can be driven by a number of different mechanisms, each resulting in a different type of insulator -- Change in chemical potential can induce a transition from a metal to a band insulator; strong correlations can drive a metal into a Mott insulator with an energy gap; an Anderson transition, on the other hand, due to disorder leads to a localized insulator without a gap in the spectrum. Here we report the discovery of an alternative route for MIT driven by the creation of a network of narrow channels. Transport data on Pt substituted for Ti in TiSe$_2$ shows a dramatic increase of resistivity by five orders of magnitude for few % of Pt substitution, with a power-law dependence of the temperature-dependent resistivity $rho(T)$. Our scanning tunneling microscopy data show that Pt induces an irregular network of nanometer-thick domain walls (DWs) of charge density wave (CDW) order, which pull charge carriers out of the bulk and into the DWs. While the CDW domains are gapped, the charges confined to the narrow DWs interact strongly, with pseudogap-like suppression in the local density of states, even when they were weakly interacting in the bulk, and scatter at the DW network interconnects thereby generating the highly resistive state. Angle-resolved photoemission spectroscopy spectra exhibit pseudogap behavior corroborating the spatial coexistence of gapped domains and narrow domain walls with excess charge carriers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا