ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Fermi surface reconstruction in the static stripe phase of La$_{1.8-x}$Eu$_{0.2}$Sr$_x$CuO$_{4}$, $x=1/8$

122   0   0.0 ( 0 )
 نشر من قبل Volodymyr Zabolotnyy
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a photoemission study of La$_{0.8-x}$Eu$_{0.2}$Sr$_x$CuO$_{4}$ with doping level $x$=1/8, where the charge carriers are expected to order forming static stripes. Though the local probes in direct space seem to be consistent with this idea, there has been little evidence found for such ordering in quasiparticle dispersions. We show that the Fermi surface topology of the 1/8 compound develops notable deviations from that observed for La$_{2- x}$Sr$_x$CuO$_{4}$ in a way consistent with the FS reconstruction expected for the scattering on the antiphase stripe order.



قيم البحث

اقرأ أيضاً

158 - M. Kofu , S. -H. Lee , M. Fujita 2008
Low energy spin excitations were investigated in the static stripe phase of La_{2-x}Sr_xCuO_4 using elastic and inelastic neutron scattering on single crystals. For x = 1/8 in which long-range static stripe order exists, an energy gap of E_g = 4 meV exists in the excitation spectrum in addition to strong quasi-elastic, incommensurate spin fluctuations associated with the static stripes. When x increases, the spectral weight of the spin fluctuations shifts from the quasi-elastic continuum to the excitation spectrum above E_g. The dynamic correlation length as a function of energy and the temperature evolution of the energy spectrum suggest a phase separation of two distinct magnetic phases in real space.
Charge density wave (CDW) correlations are prevalent in all copper-oxide superconductors. While CDWs in conventional metals are driven by coupling between lattice vibrations and electrons, the role of the electron-phonon coupling (EPC) in cuprate CDW s is strongly debated. Using Cu $L_3$ edge resonant inelastic x-ray scattering (RIXS), we study the CDW and Cu-O bond-stretching phonons in the stripe-ordered cuprate La$_{1.8-x}$Eu$_{0.2}$Sr$_{x}$CuO$_{4+delta}$. We investigate the interplay between charge order and EPC as a function of doping and temperature, and find that the EPC is enhanced in a narrow momentum region around the CDW wave vector. By detuning the incident photon energy from the absorption resonance, we extract an EPC matrix element at the CDW wave vector of $Msimeq$ 0.36 eV, which decreases to $Msimeq$ 0.30 eV at high temperature in the absence of the CDW. Our results suggest a feedback mechanism in which the CDW enhances the EPC which, in turn, further stabilizes the CDW.
126 - Qisi Wang , M. Horio , K. von Arx 2019
We use resonant inelastic x-ray scattering to investigate charge-stripe correlations in La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_4$. By differentiating elastic from inelastic scattering, it is demonstrated that charge-stripe correlations precede both t he structural low-temperature tetragonal phase and the transport-defined pseudogap onset. The scattering peak amplitude from charge stripes decays approximately as $T^{-2}$ towards our detection limit. The in-plane integrated intensity, however, remains roughly temperature independent. Therefore, although the incommensurability shows a remarkably large increase at high temperature, our results are interpreted via a single scattering constituent. In fact, direct comparison to other stripe-ordered compounds (La$_{1.875}$Ba$_{0.125}$CuO$_4$, La$_{1.475}$Nd$_{0.4}$Sr$_{0.125}$CuO$_4$ and La$_{1.875}$Sr$_{0.125}$CuO$_4$) suggests a roughly constant integrated scattering intensity across all these compounds. Our results therefore provide a unifying picture for the charge-stripe ordering in La-based cuprates. As charge correlations in La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_4$ extend beyond the low-temperature tetragonal and pseudogap phase, their emergence heralds a spontaneous symmetry breaking in this compound.
Despite its unique structural features, the magnetism of single-layered cuprate with five oxygen coordination ($T$*-type structure) has not been investigated thus far. Here, we report the results of muon spin relaxation and magnetic susceptibility me asurements to elucidate the magnetism of $T$*-type La$_{1-x/2}$Eu$_{1-x/2}$Sr$_x$CuO$_4$ (LESCO) via magnetic Fe- and non-magnetic Zn-substitution. We clarified the inducement of the spin-glass (SG)-like magnetically ordered state in La$_{1-x/2}$Eu$_{1-x/2}$Sr$_x$Cu$_y$Fe$_{1-y}$O$_4$ with $x = 0.24 + y$, and the non-magnetic state in La$_{1-x/2}$Eu$_{1-x/2}$Sr$_x$Cu$_y$Zn$_{1-y}$O$_4$ with $x$ = 0.24 after the suppression of superconductivity for $y$ $geq$ 0.025. The SG state lies below $sim$7 K in a wide Sr concentration range between 0.19 and 0.34 in 5$%$ Fe-substituted LESCO. The short-range SG state is consistent with that originating from the Ruderman-Kittel-Kasuya-Yosida interaction in a metallic state. Thus, the results provide the first evidence for Fermi liquid (FL) state in the pristine $T$*-type LESCO. Taking into account the results of an oxygen $K$-edge X-ray absorption spectroscopy measurement $[$J. Phys. Soc. Jpn. 89, 075002 (2020)$]$ reporting the actual hole concentrations in LESCO, our results demonstrate the existence of the FL state in a lower hole-concentration region, compared to that in $T$-type La$_{2-x}$Sr$_x$CuO$_4$. The emergence of the FL state in a lower hole-concentration region is possibly associated with a smaller charge transfer gap energy in the parent material with five oxygen coordination.
We demonstrate that one can measure the charge-stripe order parameter in the hole-doped CuO(2) planes of La(1.875)Ba(0.125)CuO(4), La(1.48)Nd(0.4)Sr(0.12)CuO(4) and La(1.68)Eu(0.2)Sr(0.12)CuO(4) utilizing the wipeout effects of Cu-63 NQR. Application of the same approach to La(2-x)Sr(x)CuO(4) reveals the presence of similar stripe order for the entire underdoped superconducting regime 1/16 < x < 1/8.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا