ترغب بنشر مسار تعليمي؟ اضغط هنا

Modification of the 21-cm power spectrum by X-rays during the epoch of reionisation

506   0   0.0 ( 0 )
 نشر من قبل Lila Warszawski
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We incorporate a contribution to reionization from X-rays within analytic and semi-numerical simulations of the 21-cm signal arising from neutral hydrogen during the epoch of reionization. We explore the impact that X-ray ionizations have on the power spectrum (PS) of 21-cm fluctuations by varying both the average X-ray MFP and the fractional contribution of X-rays to reionization. In general, prior to the epoch when the intergalactic medium is dominated by ionized regions (H {sevensize II} regions), X-ray-induced ionization enhances fluctuations on spatial scales smaller than the X-ray MFP, provided that X-ray heating does not strongly supress galaxy formation. Conversely, at later times when H2 regions dominate, small-scale fluctuations in the 21-cm signal are suppressed by X-ray ionization. Our modelling also shows that the modification of the 21-cm signal due to the presence of X-rays is sensitive to the relative scales of the X-ray MFP, and the characteristic size of H2 regions. We therefore find that X-rays imprint an epoch and scale-dependent signature on the 21-cm PS, whose prominence depends on fractional X-ray contribution. The degree of X-ray heating of the IGM also determines the extent to which these features can be discerned. We show that the MWA will have sufficient sensitivity to detect this modification of the PS, so long as the X-ray photon MFP falls within the range of scales over which the array is most sensitive ($sim0.1$ Mpc$^{-1}$). In cases in which this MFP takes a much smaller value, an array with larger collecting area would be required.



قيم البحث

اقرأ أيضاً

We assess the effect of a population of high-redshift quasars on the 21-cm power spectrum during the epoch of reionisation. Our approach is to implement a semi-numerical scheme to calculate the three-dimensional structure of ionised regions surroundi ng massive halos at high redshift. We include the ionising influence of luminous quasars by populating a simulated overdensity field with quasars using a Monte Carlo Markov Chain algorithm. We find that quasars modify both the amplitude and shape of the power spectrum at a level which is of the same order as the fractional contribution to reionisation. The modification is found both at constant redshift and at constant global neutral fraction, and arises because ionising photons produced by quasars are biased relative to the density field at a level that is higher than steller ionising photons. Our results imply that quasar ionisation will need to be included in detailed modelling of observed 21-cm power spectra.
We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observati ons were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of $10^4$ mK on comoving scales $klesssim 0.5 h$Mpc$^{-1}$. This represents the first upper limits on the $21$ cm power spectrum fluctuations at redshifts $12lesssim z lesssim 18$ but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.
We investigate the impact of neutral hydrogen (HI) in galaxies on the statistics of 21-cm fluctuations using analytic and semi-numerical modelling. Following the reionisation of hydrogen the HI content of the Universe is dominated by damped absorptio n systems (DLAs), with a cosmic density in HI that is observed to be constant at a level equal to ~2% of the cosmic baryon density from z~1 to z~5. We show that extrapolation of this constant fraction into the reionisation epoch results in a reduction of 10-20% in the amplitude of 21-cm fluctuations over a range of spatial scales. The assumption of a different percentage during the reionisation era results in a proportional change in the 21-cm fluctuation amplitude. We find that consideration of HI in galaxies/DLAs reduces the prominence of the HII region induced shoulder in the 21-cm power spectrum (PS), and hence modifies the scale dependence of 21-cm fluctuations. We also estimate the 21cm-galaxy cross PS, and show that the cross PS changes sign on scales corresponding to the HII regions. From consideration of the sensitivity for forthcoming low-frequency arrays we find that the effects of HI in galaxies/DLAs on the statistics of 21-cm fluctuations will be significant with respect to the precision of a PS or cross PS measurement. In addition, since overdense regions are reionised first we demonstrate that the cross-correlation between galaxies and 21-cm emission changes sign at the end of the reionisation era, providing an alternative avenue to pinpoint the end of reionisation. The sum of our analysis indicates that the HI content of the galaxies that reionise the universe will need to be considered in detailed modelling of the 21-cm intensity PS in order to correctly interpret measurements from forthcoming low-frequency arrays.
90 - Rajesh Mondal 2015
The non-Gaussian nature of the epoch of reionization (EoR) 21-cm signal has a significant impact on the error variance of its power spectrum $P({bf textit{k}})$. We have used a large ensemble of semi-numerical simulations and an analytical model to e stimate the effect of this non-Gaussianity on the entire error-covariance matrix ${mathcal{C}}_{ij}$. Our analytical model shows that ${mathcal{C}}_{ij}$ has contributions from two sources. One is the usual variance for a Gaussian random field which scales inversely of the number of modes that goes into the estimation of $P({bf textit{k}})$. The other is the trispectrum of the signal. Using the simulated 21-cm signal ensemble, an ensemble of the randomized signal and ensembles of Gaussian random ensembles we have quantified the effect of the trispectrum on the error variance ${mathcal{C}}_{ij}$. We find that its relative contribution is comparable to or larger than that of the Gaussian term for the $k$ range $0.3 leq k leq 1.0 ,{rm Mpc}^{-1}$, and can be even $sim 200$ times larger at $k sim 5, {rm Mpc}^{-1}$. We also establish that the off-diagonal terms of ${mathcal{C}}_{ij}$ have statistically significant non-zero values which arise purely from the trispectrum. This further signifies that the error in different $k$ modes are not independent. We find a strong correlation between the errors at large $k$ values ($ge 0.5 ,{rm Mpc}^{-1}$), and a weak correlation between the smallest and largest $k$ values. There is also a small anti-correlation between the errors in the smallest and intermediate $k$ values. These results are relevant for the $k$ range that will be probed by the current and upcoming EoR 21-cm experiments.
We explore methods for robust estimation of the 21 cm signal from the Epoch of Reionisation (EoR). A Kernel Density Estimator (KDE) is introduced for measuring the spatial temperature fluctuation power spectrum from the EoR. The KDE estimates the und erlying probability distribution function of fluctuations as a function of spatial scale, and contains different systematic biases and errors to the typical approach to estimating the fluctuation power spectrum. Extraction of histograms of visibilities allows moments analysis to be used to discriminate foregrounds from 21 cm signal and thermal noise. We use the information available in the histograms, along with the statistical dis-similarity of foregrounds from two independent observing fields, to robustly separate foregrounds from cosmological signal, while making no assumptions about the Gaussianity of the signal. Using two independent observing fields to robustly discriminate signal from foregrounds is crucial for the analysis presented in this paper. We apply the techniques to 13 hours of Murchison Widefield Array (MWA) EoR data over two observing fields. We compare the output to that obtained with a comparative power spectrum estimation method, and demonstrate the reduced foreground contamination using this approach. Using the second moment obtained directly from the KDE distribution functions yields a factor of 2-3 improvement in power for k < 0.3hMpc^{-1} compared with a matched delay space power estimator, while weighting data by additional statistics does not offer significant improvement beyond that available for thermal noise-only weights.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا