ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust statistics toward detection of the 21 cm signal from the Epoch of Reionisation

171   0   0.0 ( 0 )
 نشر من قبل Cathryn Trott
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore methods for robust estimation of the 21 cm signal from the Epoch of Reionisation (EoR). A Kernel Density Estimator (KDE) is introduced for measuring the spatial temperature fluctuation power spectrum from the EoR. The KDE estimates the underlying probability distribution function of fluctuations as a function of spatial scale, and contains different systematic biases and errors to the typical approach to estimating the fluctuation power spectrum. Extraction of histograms of visibilities allows moments analysis to be used to discriminate foregrounds from 21 cm signal and thermal noise. We use the information available in the histograms, along with the statistical dis-similarity of foregrounds from two independent observing fields, to robustly separate foregrounds from cosmological signal, while making no assumptions about the Gaussianity of the signal. Using two independent observing fields to robustly discriminate signal from foregrounds is crucial for the analysis presented in this paper. We apply the techniques to 13 hours of Murchison Widefield Array (MWA) EoR data over two observing fields. We compare the output to that obtained with a comparative power spectrum estimation method, and demonstrate the reduced foreground contamination using this approach. Using the second moment obtained directly from the KDE distribution functions yields a factor of 2-3 improvement in power for k < 0.3hMpc^{-1} compared with a matched delay space power estimator, while weighting data by additional statistics does not offer significant improvement beyond that available for thermal noise-only weights.



قيم البحث

اقرأ أيضاً

Emulation of the Global (sky-averaged) 21-cm signal from the Cosmic Dawn and Epoch of Reionization with neural networks has been shown to be an essential tool for physical signal modelling. In this paper we present globalemu, a Global 21-cm signal em ulator that uses redshift as a character defining variable along side a set of astrophysical parameters to estimate the brightness temperature of the 21-cm signal. Combined with a physically motivated pre-processing of the data this makes for a reliable and fast emulator that is relatively insensitive to the neural network design. A single high resolution signal can be emulated in 1.3 ms when using globalemu in comparison to 133 ms, a factor of 102 improvement, when using the existing public state of the art emulator 21cmGEM evaluated with the same computing power. We illustrate, with the same training and test data used for 21cmGEM, that globalemu is almost twice as accurate as 21cmGEM and for 95% of models in a test set of $approx1,700$ we can achieve a RMSE of $leq 5.37$ mK and a mean RMSE of 2.52 mK across the band z = 7 -28 (approximately 10% the expected noise of 25 mK for the Radio Experiment for the Analysis of Cosmic Hydrogen (REACH)). Further, globalemu provides a flexible framework in which the neutral fraction history and Global signal models with updated astrophysics can be emulated easily. The emulator is pip installable and available at: https://github.com/htjb/globalemu. globalemu will be used by the REACH collaboration to perform physical signal modelling inside a Bayesian nested sampling loop.
70 - Anv{z}e Slosar 2016
The motion of the solar system with respect to the cosmic rest frame modulates the monopole of the Epoch of Reionization 21-cm signal into a dipole. This dipole has a characteristic frequency dependence that is dominated by the frequency derivative o f the monopole signal. We argue that although the signal is weaker by a factor of $sim100$, there are significant benefits in measuring the dipole. Most importantly, the direction of the cosmic velocity vector is known exquisitely well from the cosmic microwave background and is not aligned with the galaxy velocity vector that modulates the foreground monopole. Moreover, an experiment designed to measure a dipole can rely on differencing patches of the sky rather than making an absolute signal measurement, which helps with some systematic effects.
90 - Rajesh Mondal 2015
The non-Gaussian nature of the epoch of reionization (EoR) 21-cm signal has a significant impact on the error variance of its power spectrum $P({bf textit{k}})$. We have used a large ensemble of semi-numerical simulations and an analytical model to e stimate the effect of this non-Gaussianity on the entire error-covariance matrix ${mathcal{C}}_{ij}$. Our analytical model shows that ${mathcal{C}}_{ij}$ has contributions from two sources. One is the usual variance for a Gaussian random field which scales inversely of the number of modes that goes into the estimation of $P({bf textit{k}})$. The other is the trispectrum of the signal. Using the simulated 21-cm signal ensemble, an ensemble of the randomized signal and ensembles of Gaussian random ensembles we have quantified the effect of the trispectrum on the error variance ${mathcal{C}}_{ij}$. We find that its relative contribution is comparable to or larger than that of the Gaussian term for the $k$ range $0.3 leq k leq 1.0 ,{rm Mpc}^{-1}$, and can be even $sim 200$ times larger at $k sim 5, {rm Mpc}^{-1}$. We also establish that the off-diagonal terms of ${mathcal{C}}_{ij}$ have statistically significant non-zero values which arise purely from the trispectrum. This further signifies that the error in different $k$ modes are not independent. We find a strong correlation between the errors at large $k$ values ($ge 0.5 ,{rm Mpc}^{-1}$), and a weak correlation between the smallest and largest $k$ values. There is also a small anti-correlation between the errors in the smallest and intermediate $k$ values. These results are relevant for the $k$ range that will be probed by the current and upcoming EoR 21-cm experiments.
Using a suite of detailed numerical simulations we estimate the level of anisotropy generated by the time evolution along the light cone of the 21cm signal from the epoch of reionization. Our simulations include the physics necessary to model the sig nal during both the late emission regime and the early absorption regime, namely X-ray and Lyman-band 3D radiative transfer in addition to the usual dynamics and ionizing UV transfer. The signal is analysed using correlation functions perpendicular and parallel to the line of sight (LOS). We reproduce general findings from previous theoretical studies: the overall amplitude of the correlations and the fact that the light cone anisotropy is visible only on large scales (100 cMpc). However, the detailed behaviour is different. At 3 different epochs, the amplitude of the correlations along and perpendicular to the LOS differ from each other, indicating anisotropy. These 3 epochs are associated with 3 events of the global reionization history: the overlap of ionized bubbles, the onset of mild heating by X-rays in regions around the sources, and the onset of efficient Lyman-alpha coupling in regions around the sources. A 20x20 deg^2 survey area may be necessary to mitigate sample variance when we use the directional correlation functions. On a 100 cMpc scale the light cone anisotropy dominates over the anisotropy generated by peculiar velocity gradients computed in the linear regime. By modelling instrumental noise and limited resolution, we find that the anisotropy should be easily detectable by the SKA, assuming perfect foreground removal, the limiting factor being a large enough survey size. In the case of the LOFAR, it is likely that only first anisotropy episode will fall in the observing frequency range and will be detectable only if sample variance is much reduced (i.e. a larger than 20x20 deg^2 survey, which is not presently planned).
Studying the cosmic dawn and the epoch of reionization through the redshifted 21 cm line are among the major science goals of the SKA1. Their significance lies in the fact that they are closely related to the very first stars in the universe. Interpr eting the upcoming data would require detailed modelling of the relevant physical processes. In this article, we focus on the theoretical models of reionization that have been worked out by various groups working in India with the upcoming SKA in mind. These models include purely analytical and semi-numerical calculations as well as fully numerical radiative transfer simulations. The predictions of the 21 cm signal from these models would be useful in constraining the properties of the early galaxies using the SKA data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا