ترغب بنشر مسار تعليمي؟ اضغط هنا

Calculation of Asymptotic and RMS Kicks Due To Higher Order Modes in the 3.9GHz Cavity

39   0   0.0 ( 0 )
 نشر من قبل Leo Bellantoni
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

FLASH plans to use a third harmonic (3.9GHz) superconducting cavity to compensate nonlinear distortions of the longitudinal phase space due to the sinusoidal curvature of the the cavity voltage of the TESLA 1.3GHz cavities. Higher order modes (HOMs) in the 3.9GHz have a significant impact on the dynamics of the electron bunches in a long bunch train. Kicks due to dipole modes can be enhanced along the bunch train depending on the frequency and Q-value of the modes. The enhancement factor for a constant beam offset with respect to the cavity has been calculated. A simple Monte Carlo model of these effects, allowing for scatter in HOM frequencies due to manufacturing variances, has also been implemented and results for both FLASH and for an XFEL-like configuration are presented.

قيم البحث

اقرأ أيضاً

Higher-order mode (HOM) based intra-cavity beam diagnostics has been proved effectively and conveniently in superconducting radio-frequency (SRF) accelerators. Our recent research shows that the beam harmonics in the bunch train excited HOM spectrum, which have much higher signal-to-noise ratio than the intrinsic HOM peaks, may also be useful for beam diagnostics. In this paper, we will present our study on bunch train excited HOMs, including the theoretic model and recent experiments carried out based on the DC-SRF photoinjector and SRF linac at Peking University.
A 56 MHz superconducting RF cavity was designed and installed in the Relativistic Heavy Ion Collider (RHIC). It is the first superconducting quarter wave resonator (QWR) operating in a high-energy storage ring. We discuss herein the cavity operation with Au+Au collisions, and with asymmetrical Au+He3 collisions. The cavity is a storage cavity, meaning that it becomes active only at the energy of experiment, after the acceleration cycle is completed. With the cavity at 300 kV, an improvement in luminosity was detected from direct measurements, and the bunch length has been reduced. The uniqueness of the QWR demands an innovative design of the higher order mode dampers with high-pass filters, and a distinctive fundamental mode damper that enables the cavity to be bypassed during the acceleration stage.
93 - T. Puppe , P. Maunz , T. Fischer 2003
Transits of single atoms through higher-order Hermite-Gaussian transverse modes of a high-finesse optical cavity are observed. Compared to the fundamental Gaussian mode, the use of higher-order modes increases the information on the atomic position. The experiment is a first experimental step towards the realisation of an atomic kaleidoscope.
We report the direct observations of sub-macropulse beam centroid oscillations correlated with higher order modes (HOMs) which were generated by off-axis electron beam steering in TESLA-type superconducting RF cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a photocathode rf gun injecting beam into two separated 9-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. Oscillations of ~100 kHz in the vertical plane and ~380 kHz in the horizontal plane with up to 600-{mu}m amplitudes were observed in a 3-MHz micropulse repetition rate beam with charges of 100, 300, 500, and 1000 pC/b. However, the effects were much reduced at 100 pC/b. The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.
62 - Daniele Agostini 2017
We show that vanishing of asymptotic p-th syzygies implies p-very ampleness for line bundles on arbitrary projective schemes. For smooth surfaces we prove that the converse holds when p is small, by studying the Bridgeland-King-Reid-Haiman correspond ence for tautological bundles on the Hilbert scheme of points. This extends previous results of Ein-Lazarsfeld, Ein-Lazarsfeld-Yang and gives a partial answer to some of their questions. As an application of our results, we show how to use syzygies to bound the irrationality of a variety.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا