ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar populations in a standard ISOGAL field in the Galactic disk

53   0   0.0 ( 0 )
 نشر من قبل Shashikiran Ganesh
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Ganesh




اسأل ChatGPT حول البحث

We aim to identify the stellar populations (mostly red giants and young stars) detected in the ISOGAL survey at 7 and 15micron towards a field (LN45) in the direction l=-45, b=0.0. The sources detected in the survey of the Galactic plane by the Infrared Space Observatory are characterized based on colour-colour and colour-magnitude diagrams. We combine the ISOGAL catalog with the data from surveys such as 2MASS and GLIMPSE. Interstellar extinction and distance are estimated using the red clump stars detected by 2MASS in combination with the isochrones for the AGB/RGB branch. Absolute magnitudes are thus derived and the stellar populations are identified based on their absolute magnitudes and their infrared excess. A standard approach to the analysis of ISOGAL disk observations has been established. We identify several hundred RGB/AGB stars and 22 candidate young stellar objects in the direction of this field in an area of 0.16 deg^2. An over-density of stellar sources is found at distances corresponding to the distance of the Scutum-Crux spiral arm. In addition, we determine mass-loss rates of AGB-stars using dust radiative transfer models from the literature.

قيم البحث

اقرأ أيضاً

We use HST/ACS to study the resolved stellar populations of the nearby, nearly edge-on galaxy NGC4244 across its outer disk surface density break. The stellar photometry allows us to study the distribution of different stellar populations and reach v ery low equivalent surface brightnesses. We find that the break occurs at the same radius for young, intermediate age, and old stars. The stellar density beyond the break drops sharply by a factor of at least 600 in 5 kpc. The break occurs at the same radius independent of height above the disk, but is sharpest in the midplane and nearly disappears at large heights. These results make it unlikely that truncations are caused by a star formation threshold alone: the threshold would have to keep the same radial position from less than 100 Myr to 10 Gyr ago, in spite of potential disturbances such as infall and redistribution of gas by internal processes. A dynamical interpretation of truncation formation is more likely such as due to angular momentum redistribution by bars or density waves, or heating and stripping of stars caused by the bombardment of dark matter sub-halos. The latter explanation is also in quantitative agreement with the small diffuse component we see around the galaxy.
73 - G. Bono 2013
We discuss the stellar content of the Galactic Center, and in particular, recent estimates of the star formation rate (SFR). We discuss pros and cons of the different stellar tracers and focus our attention on the SFR based on the three classical Cep heids recently discovered in the Galactic Center. We also discuss stellar populations in field and cluster stars and present some preliminary results based on near-infrared photometry of a field centered on the young massive cluster Arches. We also provide a new estimate of the true distance modulus to the Galactic Center and we found 14.49$pm$0.02(standard)$pm$0.10(systematic) mag (7.91$pm0.08pm0.40$ kpc). Current estimate agrees quite well with similar photometric and kinematic distance determinations available in the literature. We also discuss the metallicity gradient of the thin disk and the sharp change in the slope when moving across the edge of the inner disk, the Galactic Bar and the Galactic Center. The difference becomes even more compelling if we take into account that metal abundances are based on young stellar tracers (classical Cepheids, Red Supergiants, Luminous Blue Variables). Finally, we briefly outline the possible mechanisms that might account for current empirical evidence.
71 - Carine Babusiaux 2012
Until recently our knowledge of the Galactic Bulge stellar populations was based on the study of a few low extinction windows. Large photometric and spectroscopic surveys are now underway to map large areas of the bulge. They probe several complex st ructures which are still to be fully characterized as well as their links with the inner disc, the thick disc and the inner halo. I will review our current, rapidly increasing, knowledge of the bulge stellar populations and the new insight expected towards the Gaia era to disentangle the formation history of the Galactic inner regions.
We present stellar age profiles for 64 Virgo cluster disk galaxies whose analysis poses a challenge for current galaxy formation models. Our results can be summarized as follows: first, and contrary to observations of field galaxies, these cluster ga laxies are distributed almost equally amongst the three main types of disk galaxy luminosity profiles (I/II/III), indicating that the formation and/or survival of Type II breaks is suppressed within the cluster environment. Second, we find examples of statistically-significant
225 - F. Annibali 2007
We have acquired intermediate resolution spectra in the 3700-7000 A wavelength range for a sample of 65 early-type galaxies predominantly located in low density environments, a large fraction of which show emission lines. The spectral coverage and th e high quality of the spectra allowed us to derive Lick line-strength indices and to study their behavior at different galacto-centric distances. Ages, metallicities and element abundance ratios have been derived for the galaxy sample by comparison of the line-strength index data set with our new developed Simple Stellar Population (SSP) models. We have analyzed the behavior of the derived stellar population parameters with the central galaxy velocity dispersion and the local galaxy density in order to understand the role played by mass and environment on the evolution of early-type galaxies. We find that the chemical path is mainly driven by the halo mass, more massive galaxies exhibiting the more efficient chemical enrichment and shorter star formation timescales. Galaxies in denser environments are on average older than galaxies in less dense environments. The last ones show a large age spread which is likely to be due to rejuvenation episodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا