ترغب بنشر مسار تعليمي؟ اضغط هنا

The angular sizes of dwarf stars and subgiants - Non-linear surface brightness relations in BVRcIc from interferometry

35   0   0.0 ( 0 )
 نشر من قبل Pierre Kervella
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Pierre Kervella




اسأل ChatGPT حول البحث

Context: The prediction of stellar angular diameters from broadband photometry plays an important role for different applications. In particular, long-baseline interferometry, gravitational microlensing, extrasolar planet transits, and many other observing techniques require accurate predictions of the angular size of stars. These predictions are based on the surface brightness-colour (SBC) relations. Aims: Our goal is to calibrate general-purpose SBC relations using visible colours, the most commonly available data for most stars. Methods: We compiled the existing long-baseline interferometric observations of nearby dwarf and subgiant stars and the corresponding broadband photometry in the Johnson B V and Cousins Rc Ic bands. We then adjusted polynomial SBC models to these data. Results: Due to the presence of spectral features that depend on the effective temperature, the SBC relations are usually not linear for visible colours. We present polynomial fits that can be employed with BVRcIc based colours to predict the limb-darkened angular diameters (i.e. photospheric) of dwarf and subgiant stars with a typical accuracy of 5%. Conclusions: The derived polynomial relations provide a satisfactory approximation to the observed surface brightness of nearby dwarfs and subgiants. For distant stars, the interstellar reddening should be taken into account, and will usually introduce an additional uncertainty to the predicted angular diameters.

قيم البحث

اقرأ أيضاً

We present interferometric observations of six O-type stars that were made with the Precision Astronomical Visible Observations (PAVO) beam combiner at the Center for High Angular Resolution Astronomy (CHARA) Array. The observations include multiple brackets for three targets, $lambda$~Ori~A, $zeta$~Oph, and 10~Lac, but there are only preliminary, single observations of the other three stars, $xi$~Per, $alpha$~Cam, and $zeta$~Ori~A. The stellar angular diameters range from 0.55 milliarcsec for $zeta$~Ori~A down to 0.11 mas for 10~Lac, the smallest star yet resolved with the CHARA Array. The rotational oblateness of the rapidly rotating star $zeta$ Oph is directly measured for the first time. We assembled ultraviolet to infrared flux measurements for these stars, and then derived angular diameters and reddening estimates using model atmospheres and an effective temperature set by published results from analysis of the line spectrum. The model-based angular diameters are in good agreement with observed angular diameters. We also present estimates for the effective temperatures of these stars derived by setting the interferometric angular size and fitting the spectrophotometry.
In this study we investigate the calibration of surface brightness--color (SBC) relations based solely on eclipsing binary stars. We selected a sample of 35 detached eclipsing binaries with trigonometric parallaxes from Gaia DR1 or Hipparcos, whose a bsolute dimensions are known with an accuracy better than 3% and that lie within 0.3 kpc from the Sun. For the purpose of this study, we used mostly homogeneous optical and near-infrared photometry based on the Tycho-2 and 2MASS catalogs. We derived geometric angular diameters for all stars in our sample with a precision better than 10%, and for 11 of them with a precision better than 2%. The precision of individual angular diameters of the eclipsing binary components is currently limited by the precision of the geometric distances ($sim$5% on average). However, by using a subsample of systems with the best agreement between their geometric and photometric distances, we derived the precise SBC relations based only on eclipsing binary stars. These relations have precisions that are comparable to the best available SBC relations based on interferometric angular diameters, and they are fully consistent with them. With very precise Gaia parallaxes becoming available in the near future, angular diameters with a precision better than 1% will be abundant. At that point, the main uncertainty in the total error budget of the SBC relations will come from transformations between different photometric systems, disentangling of component magnitudes, and for hot OB stars, the main uncertainty will come from the interstellar extinction determination. We argue that all these issues can be overcome with modern high-quality data and conclude that a precision better than 1% is entirely feasible.
The aim of this work is to improve the SBC relation for early-type stars in the $-1 leq V-K leq 0$ color domain, using optical interferometry. Observations of eight B- and A-type stars were secured with the VEGA/CHARA instrument in the visible. The d erived uniform disk angular diameters were converted into limb darkened angular diameters and included in a larger sample of 24 stars, already observed by interferometry, in order to derive a revised empirical relation for O, B, A spectral type stars with a V-K color index ranging from -1 to 0. We also took the opportunity to check the consistency of the SBC relation up to $V-K simeq 4$ using 100 additional measurements. We determined the uniform disk angular diameter for the eight following stars: $gamma$ Ori, $zeta$ Per, $8$ Cyg, $iota$ Her, $lambda$ Aql, $zeta$ Peg, $gamma$ Lyr, and $delta$ Cyg with V-K color ranging from -0.70 to 0.02 and typical precision of about $1.5%$. Using our total sample of 132 stars with $V-K$ colors index ranging from about $-1$ to $4$, we provide a revised SBC relation. For late-type stars ($0 leq V-K leq 4$), the results are consistent with previous studies. For early-type stars ($-1 leq V-K leq 0$), our new VEGA/CHARA measurements combined with a careful selection of the stars (rejecting stars with environment or stars with a strong variability), allows us to reach an unprecedented precision of about 0.16 magnitude or $simeq 7%$ in terms of angular diameter.
Surface brightness-color relations (SBCRs) are used for estimating angular diameters and deriving stellar properties. They are critical to derive extragalactic distances of early-type and late-type eclipsing binaries or, potentially, for extracting p lanetary parameters of late-type stars hosting planets. Various SBCRs have been implemented so far, but strong discrepancies in terms of precision and accuracy still exist in the literature. We aim to develop a precise SBCR for early-type B and A stars using selection criteria, based on stellar characteristics, and combined with homogeneous interferometric angular diameter measurements. We also improve SBCRs for late-type stars, in particular in the Gaia photometric band. We observed 18 early-type stars with the VEGA interferometric instrument, installed on the CHARA array. We then applied additional criteria on the photometric measurements, together with stellar characteristics diagnostics in order to build the SBCRs. We calibrated a SBCR for subgiant and dwarf early-type stars. The RMS of the relation is $sigma_{F_{V_{0}}} = 0.0051,$mag, leading to an average precision of 2.3% on the estimation of angular diameters, with 3.1% for $V-K < -0.2,$mag and 1.8% for $V-K > -0.2,$mag. We found that the conversion between Johnson-$K$ and 2MASS-$K_s$ photometries is a key issue for early-type stars. Following this result, we have revisited our previous SBCRs for late-type stars by calibrating them with either converted Johnson-$K$ or 2MASS-$K_s$ photometries. We also improve the calibration of these SBCRs based on the Gaia photometry. The expected precision on the angular diameter using our SBCRs for late-type stars ranges from 1.0% to 2.7%. By reaching a precision of 2.3% on the estimation of angular diameters for early-type stars, significant progress has been made to determine extragalactic distances using early-type eclipsing binaries.
The surface brightness -- colour relation (SBCR) is a basic tool in establishing precise and accurate distances within the Local Group. Detached eclipsing binary stars with accurately determined radii and trigonometric parallaxes allow for a calibrat ion of the SBCRs with unprecedented accuracy. We analysed four nearby eclipsing binary stars containing late F-type main sequence components: AL Ari, AL Dor, FM Leo and BN Scl. We determined very precise spectroscopic orbits and combined them with high precision ground- and space-based photometry. We derived the astrophysical parameters of their components with mean errors of 0.1% for mass and 0.4% for radius. We combined those four systems with another 24 nearby eclipsing binaries with accurately known radii from the literature for which $Gaia$ EDR3 parallaxes are available, in order to derive the SBCRs. The resulting SBCRs cover stellar spectral types from B9 V to G7 V. For calibrations we used Johnson optical $B$ and $V$, $Gaia$ $G_{rm BP}$ and $G$ and 2MASS $JHK$ bands. The most precise relations are calibrated using the infrared $K$ band and allow to predict angular diameters of A-, F-, and G-type dwarf and subgiant stars with a precision of 1%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا