ﻻ يوجد ملخص باللغة العربية
A simple model of quintessential inflation with the modified exponential potential $e^{-alpha phi} [A+(phi-phi_0)^2]$ is analyzed in the braneworld context. Considering reheating via instant preheating, we conclude that the model exhibits transient acceleration at late times for $0.96 lesssim A alpha^2 lesssim 1.26$ and $271 lesssim phi_0 alpha lesssim 273$, while permanent acceleration is obtained for $2.3times10^{-8} lesssim A alpha^2 lesssim 0.98$ and $255 lesssim phi_0 alpha lesssim 273$. The steep parameter $alpha$ is constrained to be in the range $5.3 lesssim alpha lesssim 10.8$.
In this paper, we have presented a model of the FLRW universe filled with matter and dark energy fluids, by assuming an ansatz that deceleration parameter is a linear function of the Hubble constant. This results in a time-dependent DP having deceler
We discuss the issue of toy model building for the dark energy component of the universe. Specifically, we consider two generic toy models recently proposed as alternatives to quintessence models, known as Cardassian expansion and the Chaplygin gas.
We present an empirical model of Comptonization for fitting the spectra of X-ray binaries. This model, simpl, has been developed as a package implemented in XSPEC. With only two free parameters, simpl is competitive as the simplest empirical model of
Constraints on an exact quintessence scalar-field model with an exponential potential are derived from gravitational lens statistics. An exponential potential can account for data from both optical quasar surveys and radio selected sources. Based on
We investigate the cosmological observational test of the extended quintessence model, i.e. a scalar-tensor gravity model with a scalar field potential serving as dark energy, by using the Planck 2018 cosmic microwave background (CMB) data, together