ﻻ يوجد ملخص باللغة العربية
We discuss the issue of toy model building for the dark energy component of the universe. Specifically, we consider two generic toy models recently proposed as alternatives to quintessence models, known as Cardassian expansion and the Chaplygin gas. We show that the former is enteriely equivalent to a class of quintessence models. We determine the observational constraints on the latter, coming from recent supernovae results and from the shape of the matter power spectrum. As expected, these restrict the model to a behaviour that closely matches that of a standard cosmological constant $Lambda$.
We investigate the cosmological observational test of the extended quintessence model, i.e. a scalar-tensor gravity model with a scalar field potential serving as dark energy, by using the Planck 2018 cosmic microwave background (CMB) data, together
Although the inflationary paradigm is the most widely accepted explanation for the current cosmological observations, it does not necessarily correspond to what actually happened in the early stages of our Universe. To decide on this issue, two paths
Massive fields in the primordial universe function as standard clocks and imprint clock signals in the density perturbations that directly record the scale factor of the primordial universe as a function of time, a(t). A measurement of such signals w
We present a comparative analysis of observational low-redshift background constraints on three candidate models for explaining the low-redshift acceleration of the universe. The generalized coupling model by Feng and Carloni and the scale invariant
We derive the slow-roll conditions for a non-minimally coupled scalar field (extended quintessence) during the radiation/matter dominated era extending our previous results for thawing quintessence. We find that the ratio $ddotphi/3Hdotphi$ becomes c