ﻻ يوجد ملخص باللغة العربية
We determine the metallicity distribution function (MDF) of the Galactic halo by means of a sample of 1638 metal-poor stars selected from the Hamburg/ESO objective-prism survey (HES). The sample was corrected for minor biases introduced by the strategy for spectroscopic follow-up observations of the metal-poor candidates, namely best and brightest stars first. [...] We determined the selection function of the HES, which must be taken into account for a proper comparison between the HES MDF with MDFs of other stellar populations or those predicted by models of Galactic chemical evolution. The latter show a reasonable agreement with the overall shape of the HES MDF for [Fe/H] > -3.6, but only a model of Salvadori et al. (2007) with a critical metallicity for low-mass star formation of Z_cr = 10^{-3.4} * Z_Sun reproduces the sharp drop at [Fe/H] ~-3.6 present in the HES MDF. [...] A comparison of the MDF of Galactic globular clusters and of dSph satellites to the Galaxy shows qualitative agreement with the halo MDF, derived from the HES, once the selection function of the latter is included. However, statistical tests show that the differences between these are still highly significant. [ABSTRACT ABRIDGED]
We present the quantitative methods used for selecting candidate metal-poor stars in the Hamburg/ESO objective-prism survey (HES). The selection is based on the strength of the Ca II K line, B-V colors (both measured directly from the digital HES spe
We present a novel method to retrieve the chemical structure of galaxies using integral field spectroscopy data through the stellar Metallicity Distribution Function (MDF). This is the probability distribution of observing stellar populations having
We report on the distribution of metallicities, [Fe/H], for very metal-poor stars in the halo of the Galaxy. Although the primary information on the nature of the Metallicity Distribution Function (MDF) is obtained from the two major recent surveys f
We determined the silicon abundances of 253 metal-poor stars in the metallicity range $-4<mathrm{[Fe/H]} <-1.5$, based on non-local thermodynamic equilibrium (NLTE) line formation calculations of neutral silicon and high-resolution spectra obtained w
Reconstructing the Galactic evolution of lithium (Li) is the main tool used to constrain the source(s) of Li enrichment in the Galaxy. Recent results have suggested a decline in Li at supersolar metallicities, which may indicate reduced production. W