ترغب بنشر مسار تعليمي؟ اضغط هنا

The stellar content of the Hamburg/ESO survey. IV. Selection of candidate metal-poor stars

160   0   0.0 ( 0 )
 نشر من قبل Norbert Christlieb
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Christlieb




اسأل ChatGPT حول البحث

We present the quantitative methods used for selecting candidate metal-poor stars in the Hamburg/ESO objective-prism survey (HES). The selection is based on the strength of the Ca II K line, B-V colors (both measured directly from the digital HES spectra), as well as J-K colors from the 2 Micron All Sky Survey. The KP index for Ca II K can be measured from the HES spectra with an accuracy of 1.0 Angstrom, and a calibration of the HES B-V colors, using CCD photometry, yields a 1-sigma uncertainty of 0.07 mag for stars in the color range 0.3 < B-V < 1.4. These accuracies make it possible to reliably reject stars with [Fe/H] > -2.0 without sacrificing completeness at the lowest metallicities. A test of the selection using 1121 stars of the HK survey of Beers, Preston, and Shectman present on HES plates suggests that the completeness at [Fe/H] < -3.5 is close to 100% and that, at the same time, the contamination of the candidate sample with false positives is low: 50% of all stars with [Fe/H] > -2.5 and 97% of all stars with [Fe/H] > -2.0 are rejected. The selection was applied to 379 HES fields, covering a nominal area of 8853 square degrees of the southern high Galactic latitude sky. The candidate sample consists of 20,271 stars in the magnitude range 10 < B < 18. A comparison of the magnitude distribution with that of the HK survey shows that the magnitude limit of the HES sample is about 2 mag fainter. Taking the overlap of the sky areas covered by both surveys into account, it follows that the survey volume for metal-poor stars has been increased by the HES by about a factor of 10 with respect to the HK survey. We have already identified several very rare objects with the HES, including, e.g., the three most heavy-element deficient stars currently known.



قيم البحث

اقرأ أيضاً

We obtain estimates of stellar atmospheric parameters for a previously published sample of 1777 relatively bright (9 < B < 14) metal-poor candidates from the Hamburg/ESO Survey. The original Frebel et al. analysis of these stars was only able to deri ve estimates of [Fe/H] and [C/Fe] for a subset of the sample, due to limitations in the methodology then available. A new spectroscopic analysis pipeline has been used to obtain estimates of Teff, log g, [Fe/H], and [C/Fe] for almost the entire dataset. This sample is very local - about 90% of the stars are located within 0.5 kpc of the Sun. We consider the chemodynamical properties of these stars in concert with a similarly local sample of stars from a recent analysis of the Bidelman & MacConnell weak-metal candidates by Beers et al. We use this combined sample to identify possible members of the suggested halo stream of stars by Helmi et al. and Chiba & Beers, as well as stars that may be associated with stripped debris from the putative parent dwarf of the globular cluster Omega Centauri, suggested to exist by previous authors. We identify a clear increase in the cumulative frequency of carbon-enhanced metal-poor (CEMP) stars with declining metallicity, as well as an increase in the fraction of CEMP stars with distance from the Galactic plane, consistent with previous results. We also identify a relatively large number of CEMP stars with kinematics consistent with the metal-weak thick-disk population, with possible implications for its origin.
We determine the metallicity distribution function (MDF) of the Galactic halo by means of a sample of 1638 metal-poor stars selected from the Hamburg/ESO objective-prism survey (HES). The sample was corrected for minor biases introduced by the strate gy for spectroscopic follow-up observations of the metal-poor candidates, namely best and brightest stars first. [...] We determined the selection function of the HES, which must be taken into account for a proper comparison between the HES MDF with MDFs of other stellar populations or those predicted by models of Galactic chemical evolution. The latter show a reasonable agreement with the overall shape of the HES MDF for [Fe/H] > -3.6, but only a model of Salvadori et al. (2007) with a critical metallicity for low-mass star formation of Z_cr = 10^{-3.4} * Z_Sun reproduces the sharp drop at [Fe/H] ~-3.6 present in the HES MDF. [...] A comparison of the MDF of Galactic globular clusters and of dSph satellites to the Galaxy shows qualitative agreement with the halo MDF, derived from the HES, once the selection function of the latter is included. However, statistical tests show that the differences between these are still highly significant. [ABSTRACT ABRIDGED]
We analyze the dynamical properties of $sim$1500 very metal-poor (VMP; [Fe/H] $lesssim -2.0$) halo stars, based primarily on medium-resolution spectroscopic data from the HK and Hamburg/ESO surveys. These data, collected over the past thirty years, a re supplemented by a number of calibration stars and other small samples, along with astrometric information from $Gaia$ DR2. We apply a clustering algorithm to the 4-D energy-action space of the sample, and identify a set of 38 Dynamically Tagged Groups (DTGs), containing between 5 and 30 member stars. Many of these DTGs can be associated with previously known prominent substructures such as $Gaia$-Sausage/Enceladus (GSE), Sequoia, the Helmi Stream (HStr), and Thamnos. Others are associated with previously identified smaller dynamical groups of stars and streams. We identify 10 new DTGs as well, many of which have strongly retrograde orbits. We also investigate possible connections between our DTGs and $sim$300 individual $r$-process-enhanced (RPE) stars from a recent literature compilation. We find that several of these objects have similar dynamical properties to GSE (5), the HStr (4), Sequoia (1), and Rg5 (1), indicating that their progenitors might have been important sources of RPE stars in the Galaxy. Additionally, a number of our newly identified DTGs are shown to be associated with at least two RPE stars each (DTG-2: 3, DTG-7: 2; DTG-27: 2). Taken as a whole, these results are consistent with ultra-faint and/or dwarf spheroidal galaxies as birth environments in which $r$-process nucleosynthesis took place, and then were disrupted by the Milky Way.
We present the first results of the EMBLA survey (Extremely Metal-poor BuLge stars with AAOmega), aimed at finding metal-poor stars in the Milky Way bulge, where the oldest stars should now preferentially reside. EMBLA utilises SkyMapper photometry t o pre-select metal-poor candidates, which are subsequently confirmed using AAOmega spectroscopy. We describe the discovery and analysis of four bulge giants with -2.72<=[Fe/H]<=-2.48, the lowest metallicity bulge stars studied with high-resolution spectroscopy to date. Using FLAMES/UVES spectra through the Gaia-ESO Survey we have derived abundances of twelve elements. Given the uncertainties, we find a chemical similarity between these bulge stars and halo stars of the same metallicity, although the abundance scatter may be larger, with some of the stars showing unusual [{alpha}/Fe] ratios.
We present results from the analysis of high-resolution spectra obtained with the Keck HIRES spectrograph for a sample of 17 candidate extremely metal-poor (EMP) stars originally selected from commissioning data obtained with the SkyMapper telescope. Fourteen of the stars have not been observed previously at high dispersion. Three have [Fe/H]<=-3.0 while the remainder, with two more metal-rich exceptions, have -3.0<=[Fe/H]<=-2.0 dex. Apart from Fe, we also derive abundances for the elements C, N, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, and Zn, and for n-capture elements Sr, Ba, and Eu. None of the current sample of stars is found to be carbon-rich. In general our chemical abundances follow previous trends found in the literature, although we note that two of the most metal-poor stars show very low [Ba/Fe] (~-1.7) coupled with low [Sr/Ba] (~-0.3). Such stars are relatively rare in the Galactic halo. One further star, and possibly two others, meet the criteria for classification as a r-I star. This study, together with that of Jacobson et al. (2015), completes the outcomes of the SkyMapper commissioning data survey for EMP stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا