ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison between continuous wave and pulsed laser EQKD systems

127   0   0.0 ( 0 )
 نشر من قبل Patrick Rice
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Advances in quantum physics and computational complexity threaten the security of present day cryptographic systems and have driven the development of quantum key distribution (QKD). Entangled quantum key distribution (EQKD) is a secure protocol that is based on fundamental quantum mechanics and is not vulnerable to these threats. The primary figure of merit for QKD systems is ability to generate secret bits. However, to date, methods that have been developed to simulate the secret bit rate generation for EQKD systems have been limited by techniques that do not provide a complete description of the quantum state produced by the source. In this paper, we provide a complete description and comparison of the secret bit rate for continuous-wave and pulsed laser EQKD systems. In particular, we highlight the relevant Poissonian and thermal photon statistics that affect the EQKD secret bit rate and use practical system parameters and configurations to show regimes where one expects optimal performance for each case.

قيم البحث

اقرأ أيضاً

A relation is found between pulsed measurements of the excited state probability of a two-level atom illuminated by a driving laser, and a continuous measurement by a second laser coupling the excited state to a third state which decays rapidly and i rreversibly. We find the time between pulses to achieve the same average detection time than a given continuous measurement in strong, weak, or intermediate coupling regimes, generalizing the results in L. S. Schulman, Phys. Rev. A 57, 1509 (1998).
We demonstrated the continuous-wave (cw) and pulsed optical vortex with topological charges driven by heat generated during the lasing process without introducing the astigmatism effect and reducing lasing efficiency. During the lasing process, the t opological charges were changeable by the thermal-induced lens and selected by the mode-matching between the pump and oscillating beams. With a graphene sample as the saturable absorber, the pulsed optical vortex was achieved at the wavelength of 1.36 {mu}m, which identified that graphene could be used as a pulse modulator for the generation of pulsed optical vortex. It could be believed that the thermally driven cw and pulsed optical vortex should have various promising applications based on the compact structure, changeable topological charges and specific wavelength
We present a design for a continuous-wave (CW) atom laser on a chip and describe the process used to fabricate the device. Our design aims to integrate quadrupole magnetic guiding of ground state Rb atoms with continuous surface adsorption evaporativ e cooling to create a continuous Bose-Einstein condensate; out-coupled atoms from the condensate should realize a CW atom laser. We choose a geometry with three wires embedded in a spiral pattern in a silicon subtrate. The guide features an integrated solenoid to mitigate spin-flip losses and provide a tailored longitudinal magnetic field. Our design also includes multiple options for atom interferometry: accomodations are in place for laser-generated atom Fabry-Perot and Mach-Zehnder interferometers, and a pair of atomic beam X-splitters is incorporated for an all-magnetic atom Mach-Zehnder setup. We demonstrate the techniques necessary to fabricate our device using existing micro- and nano-scale fabrication equipment, and discuss future options for modified designs and fabrication processes.
83 - J. Dingjan 2005
We have constructed a pulsed laser system for the manipulation of cold Rb atoms. The system combines optical telecommunications components and frequency doubling to generate light at 780 nm. Using a fast, fibre-coupled intensity modulator, output fro m a continuous laser diode is sliced into pulses with a length between 1.3 and 6.1 ns and a repetition frequency of 5 MHz. These pulses are amplified using an erbium-doped fibre amplifier, and frequency-doubled in a periodically poled lithium niobate crystal, yielding a peak power up to 12 W. Using the resulting light at 780 nm, we demonstrate Rabi oscillations on the F = 2 <-> F=3-transition of a single 87Rb atom.
The complex internal atomic structure involved in radiative transitions has an effect on the spectrum of fluctuations (noise) of the transmitted light. A degenerate transition has different properties in this respect than a pure two-level transition. We investigate these variations by studying a certain transition between two degenerate atomic levels for different choices of the polarization state of the driving laser. For circular polarization, corresponding to the textbook two-level atom case, the optical spectrum shows the characteristic Mollow triplet for strong laser drive, while the corresponding noise spectrum exhibits squeezing in some frequency ranges. For a linearly polarized drive, corresponding to the case of a multilevel system, additional features appear in both optical and noise spectra. These differences are more pronounced in the regime of a weakly driven transition: whereas the two-level case essentially exhibits elastic scattering, the multilevel case has extra noise terms related to spontaneous Raman transitions. We also discuss the possibility to experimentally observe these predicted differences for the commonly encountered case where the laser drive has excess noise in its phase quadrature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا