ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuation properties of laser light after interaction with an atomic system: comparison between two-level and multilevel atomic transitions

92   0   0.0 ( 0 )
 نشر من قبل Arturo Lezama
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The complex internal atomic structure involved in radiative transitions has an effect on the spectrum of fluctuations (noise) of the transmitted light. A degenerate transition has different properties in this respect than a pure two-level transition. We investigate these variations by studying a certain transition between two degenerate atomic levels for different choices of the polarization state of the driving laser. For circular polarization, corresponding to the textbook two-level atom case, the optical spectrum shows the characteristic Mollow triplet for strong laser drive, while the corresponding noise spectrum exhibits squeezing in some frequency ranges. For a linearly polarized drive, corresponding to the case of a multilevel system, additional features appear in both optical and noise spectra. These differences are more pronounced in the regime of a weakly driven transition: whereas the two-level case essentially exhibits elastic scattering, the multilevel case has extra noise terms related to spontaneous Raman transitions. We also discuss the possibility to experimentally observe these predicted differences for the commonly encountered case where the laser drive has excess noise in its phase quadrature.



قيم البحث

اقرأ أيضاً

We study the effect of a control beam on a Lambda electromagnetically induced transparency (EIT) system in 87Rb. The control beam couples one ground state to another excited state forming a four level N-system. Phase coherent beams to drive the N-sys tem are produced using a double injection scheme. We show that the control beam can be used to Stark shift or split the EIT resonance. Finally, we show that the when the control beam is on-resonance one observes a Doppler-free and sub-natural absorptive resonance with a width of order 100 kHz. Crucially, this narrow absorptive resonance only occurs when atoms with a range of velocities are present, as is the case in a room temperature vapour.
110 - S. A. Moiseev , A. I. Sidorova , 2014
We have studied stationary and quasi-stationary signal light pulses in cold lambda-type atomic media driven by counterpropagating control laser fields at the condition of electromagnetically induced transparency. By deriving a dispersion relation we present spectral and temporal properties of the signal light pulse and a significant influence of atomic decoherence on the coupled stationary light pulses for spatial splitting. Finally we discuss quasi-stationary light pulse evolution characterized by frozen spatial spreading for a robust coherent control of slow light pulses.
We show that coherent multiple light scattering, or diffuse light propagation, in a disordered atomic medium, prepared at ultra-low temperatures, can be be effectively delayed in the presence of a strong control field initiating a stimulated Raman pr ocess. On a relatively short time scale, when the atomic system can preserve its configuration and effects of atomic motion can be ignored, the scattered signal pulse, diffusely propagating via multiple coherent scattering through the medium, can be stored in the spin subsystem through its stimulated Raman-type conversion into spin coherence. We demonstrate how this mechanism, potentially interesting for developing quantum memories, would work for the example of a coherent light pulse propagating through an alkali-metal atomic vapor under typical conditions attainable in experiments with ultracold atoms.
We have studied relative-intensity fluctuations for a variable set of orthogonal elliptic polarization components of a linearly polarized laser beam traversing a resonant $^{87}$Rb vapor cell. Significant polarization squeezing at the threshold level (-3dB) required for the implementation of several continuous variables quantum protocols was observed. The extreme simplicity of the setup, based on standard polarization components, makes it particularly convenient for quantum information applications.
Bragg diffraction of an atomic wave packet in a retroreflective geometry with two counterpropagating optical lattices exhibits a light shift induced phase. We show that the temporal shape of the light pulse determines the behavior of this phase shift : In contrast to Raman diffraction, Bragg diffraction with Gaussian pulses leads to a significant suppression of the intrinsic phase shift due to a scaling with the third power of the inverse Doppler frequency. However, for box-shaped laser pulses, the corresponding shift is twice as large as for Raman diffraction. Our results are based on approximate, but analytical expressions as well as a numerical integration of the corresponding Schrodinger equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا