ﻻ يوجد ملخص باللغة العربية
The successful description of current data provided by the Standard Model includes fundamental fermions that are color-singlets and electroweak-nonsinglets, but no fermions that are electroweak-singlets and color-nonsinglets. In an effort to understand the absence of such fermions, we construct and study {it gedanken} models that do contain electroweak-singlet chiral quark fields. These models exhibit several distinctive properties, including the absence of any neutral lepton and the fact that both the $(uud)$ and $(ddu)$ nucleons are electrically charged. We also explore how such models could arise as low-energy limits of grand unified theories and, in this more restrictive context, we show that they exhibit further exotic properties.
Electroweak baryogenesis is a simple and attractive candidate mechanism for generating the observed baryon asymmetry in the Universe. Its viability is sometimes investigated in terms of an effective field theory of the Standard Model involving higher
We study a mechanism that generates the baryon asymmetry of the Universe during a tachyonic electroweak phase transition. We utilize as sole source of CP violation an operator that was recently obtained from the Standard Model by integrating out the quarks.
In the global fit of the Standard Model using Gfitter, electroweak precision observables as well as constraints from direct Higgs searches have been compared with state-of-the-art electroweak predictions. We use the most recent results for direct Hig
We briefly review the global Standard Model fit to electroweak precision data, and discuss the status of electroweak constraints on new interactions. We follow a general effective Lagrangian approach to obtain model-independent limits on the dimensio
Constituent quark masses can be determined quite well from experimental data in several ways and one can obtain fairly accurate values for all six $m_q$. The strong quark-meson coupling $g=2pi /sqrt{3}$ arises from the quark-level linear $sigma$ mode