ﻻ يوجد ملخص باللغة العربية
While achieving high Curie temperatures (above room temperature) in diluted magnetic semiconductors remains a challenge in the case of well controlled homogeneous alloys, several systems characterized by a strongly inhomogeneous incorporation of the magnetic component appear as promising. Incorporation of manganese into germanium drastically alters the growth conditions, and in certain conditions of low temperature Molecular Beam Epitaxy it leads to the formation of well organized nanocolumns of a Mn-rich material, with a crystalline structure in epitaxial relationship with the Mn-poor germanium matrix. A strong interaction between the Mn atoms in these nanocolums is demonstrated by x-ray absorption spectroscopy, giving rise to a ferromagnetic character as observed through magnetometry and x-ray magnetic circular dichroism. Most interesting, intense magneto-transport features are observed on the whole structure, which strongly depend on the magnetic configuration of the nanocolumns.
We report on the exchange biasing of self-assembled ferromagnetic GeMn nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of this surface oxide shows a multiplet fine structure that is typical of the Mn2+ valence state in MnO.
We show the possibility of long-range ferrimagnetic ordering with a saturation magnetisation of the order of 1 Bohr magneton per spin for arbitrarily low concentration of magnetic impurities in semiconductors, provided that the impurities form a supe
We report on the structural properties of Ge_(1-x)Mn_x layers grown by molecular beam epitaxy. In these layers, nanocolumns with a high Mn content are embedded in an almost-pure Ge matrix. We have used grazing-incidence X-ray scattering, atomic force
The magnetic circular dichroism of III-V diluted magnetic semiconductors, calculated within a theoretical framework suitable for highly disordered materials, is shown to be dominated by optical transitions between the bulk bands and an impurity band
This paper reviews the present understanding of the origin of ferromagnetic response of diluted magnetic semiconductors and diluted magnetic oxides as well as in some nominally magnetically undoped materials. It is argued that these systems can be gr