ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic circular dichroism from the impurity band in III-V diluted magnetic semiconductors

137   0   0.0 ( 0 )
 نشر من قبل Jian-Ming Tang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic circular dichroism of III-V diluted magnetic semiconductors, calculated within a theoretical framework suitable for highly disordered materials, is shown to be dominated by optical transitions between the bulk bands and an impurity band formed from magnetic dopant states. The theoretical framework incorporates real-space Greens functions to properly incorporate spatial correlations in the disordered conduction band and valence band electronic structure, and includes extended and localized electronic states on an equal basis. Our findings reconcile unusual trends in the experimental magnetic circular dichroism in III-V DMSs with the antiferromagnetic p-d exchange interaction between a magnetic dopant spin and its host.



قيم البحث

اقرأ أيضاً

264 - M. Turek , J. Siewert , J. Fabian 2009
Magneto-optical properties of the ferromagnetic semiconductor GaMnAs are studied in a material specific multi-band tight-binding approach. Two realistic models are compared: one has no impurity band while the other shows an impurity band for low Mn c oncentrations. The calculated magnetic circular dichroism (MCD) is positive for both models proving that, unlike previously asserted, the observed positive MCD signal is inconclusive as to the presence or absence of an impurity band in GaMnAs. The positive MCD is due to the antiferromagnetic p-d coupling and the transitions into the conduction band.
The element-specific technique of x-ray magnetic circular dichroism (XMCD) is used to directly determine the magnitude and character of the valence band orbital magnetic moments in (III,Mn)As ferromagnetic semiconductors. A distinct dichroism is obse rved at the As K absorption edge, yielding an As 4p orbital magnetic moment of around -0.1 Bohr magnetons per valence band hole. This is strongly influenced by strain, indicating its crucial influence on the magnetic anisotropy. The dichroism at the Ga K edge is much weaker. The K edge XMCD signals for Mn and As both have positive sign, which indicates the important contribution of Mn 4p states to the Mn K edge spectra.
The difference in the transmission for left and right circularly polarised light though thin films on substrates in a magnetic field is used to obtain the magnetic circular dichroism of the film. However there are reflections at all the interfaces an d these are also different for the two polarisations and generate the polar Kerr signal. In this paper the contribution to the differences to the total transmission from the transmission across interfaces as well as the differences in absorption in the film and the substrate are calculated. This gives a guide to when it is necessary to evaluate these corrections in order to obtain the real MCD from a measure of the differential transmission due to differential absorption in the film.
181 - C. Sliwa , T. Dietl 2008
Spin splitting of photoelectrons in p-type and electrons in n-type III-V Mn-based diluted magnetic semiconductors is studied theoretically. It is demonstrated that the unusual sign and magnitude of the apparent s-d exchange integral reported for GaAs :Mn arises from exchange interactions between electrons and holes bound to Mn acceptors. This interaction dominates over the coupling between electrons and Mn spins, so far regarded as the main source of spin-dependent phenomena. A reduced magnitude of the apparent s-d exchange integral found in n-type materials is explained by the presence of repulsive Coulomb potentials at ionized Mn acceptors and a bottleneck effect.
We report on the results of x-ray absorption (XAS), x-ray magnetic circular dichroism (XMCD), and photoemission experiments on {it n}-type Zn$_{1-x}$Co$_x$O ($x=0.05$) thin film, which shows ferromagnetism at room temperature. The XMCD spectra show a multiplet structure, characteristic of the Co$^{2+}$ ion tetrahedrally coordinated by oxygen, suggesting that the ferromagnetism comes from Co ions substituting the Zn site in ZnO. The magnetic field and temperature dependences of the XMCD spectra imply that the non-ferromagnetic Co ions are strongly coupled antiferromagnetically with each other.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا