ﻻ يوجد ملخص باللغة العربية
We have studied the antiferromagnetic quantum phase transition of a 2D Kondo-Heisenberg square lattice using the non-linear sigma model. A renormalization group analysis of the competing Kondo -- RKKY interaction was carried out to 1-loop order in the $epsilon$ expansion, and a new quantum critical point is found, dominated by Kondo fluctuations. In addition, the spin-wave velocity scales logarithmically near the new QCP, i.e breakdown of hydrodynamic behavior. The results allow us to propose a new phase diagram near the AFM fixed point of this 2D Kondo lattice model.
We derive, by means of an extended Gutzwiller wavefunction and within the Gutzwiller approximation, the phase diagram of the Kondo lattice model. We find that generically, namely in the absence of nesting, the model displays an $f$-electron Mott loca
The magnetic ground state phase diagram of the ferromagnetic Kondo-lattice model is constructed by calculating internal energies of all possible bipartite magnetic configurations of the simple cubic lattice explicitly. This is done in one dimension (
The interplay between the Kondo effect and magnetic ordering driven by the Ruderman-Kittel-Kasuya-Yosida interaction is studied within the two-dimensional Hubbard-Kondo lattice model. In addition to the antiferromagnetic exchange interaction, $J_perp
The problem of a spin-1/2 magnetic impurity near an antiferromagnetic transition of the host lattice is solved. The problem is shown to transform to a multichannel problem. A variety of fixed points is discovered asymptotically near the AFM-critical
The quantum phase transition between paramagnetic and antiferromagnetic phases of the Kondo lattice model with Ising anisotropy in the intersite exchange is studied within the framework of extended dynamical mean-field theory. Nonperturbative numeric