ترغب بنشر مسار تعليمي؟ اضغط هنا

Broad lifetime distributions for ordering dynamics in complex networks

37   0   0.0 ( 0 )
 نشر من قبل Riitta Toivonen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We search for conditions under which a characteristic time scale for ordering dynamics towards either of two absorbing states in a finite complex network of interactions does not exist. With this aim, we study random networks and networks with mesoscale community structure built up from randomly connected cliques. We find that large heterogeneity at the mesoscale level of the network appears to be a sufficient mechanism for the absence of a characteristic time for the dynamics. Such heterogeneity results in dynamical metastable states that survive at any time scale.

قيم البحث

اقرأ أيضاً

We address the role of community structure of an interaction network in ordering dynamics, as well as associated forms of metastability. We consider the voter and AB model dynamics in a network model which mimics social interactions. The AB model inc ludes an intermediate state between the two excluding options of the voter model. For the voter model we find dynamical metastable disordered states with a characteristic mean lifetime. However, for the AB dynamics we find a power law distribution of the lifetime of metastable states, so that the mean lifetime is not representative of the dynamics. These trapped metastable states, which can order at all time scales, originate in the mesoscopic network structure.
99 - Sen Pei , Hernan A. Makse 2013
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from the epidemic control, innovation diffusion, viral marketing, social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community -- LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in LiveJournal social network, only a small fraction of them involve in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with large influence. Our results should provide useful information for designing efficient spreading strategies in reality.
112 - Jiuhua Zhao , Qipeng Liu , 2014
We consider a dynamical network model in which two competitors have fixed and different states, and each normal agent adjusts its state according to a distributed consensus protocol. The state of each normal agent converges to a steady value which is a convex combination of the competitors states, and is independent of the initial states of agents. This implies that the competition result is fully determined by the network structure and positions of competitors in the network. We compute an Influence Matrix (IM) in which each element characterizing the influence of an agent on another agent in the network. We use the IM to predict the bias of each normal agent and thus predict which competitor will win. Furthermore, we compare the IM criterion with seven node centrality measures to predict the winner. We find that the competitor with higher Katz Centrality in an undirected network or higher PageRank in a directed network is much more likely to be the winner. These findings may shed new light on the role of network structure in competition and to what extent could competitors adjust network structure so as to win the competition.
We describe a concept that has the potential to change how we think about the underlying mechanisms of cell membrane electroporation (EP). Prior experimental, theoretical and modeling have emphasized a single pore lifetime as adequate for particular conditions. Here we introduce a much more complex response: The rapid creation of many types of pore structures, of which some are traditional transient lipidic pores (TPs), but the great majority are complex pores (CPs) based on both lipids and other molecules or molecular segments. At the inner leaflet of the cell plasma membrane (PM) non-lipidic molecules come from the over-crowded cytoplasm. At the outer leaflet they originate from the extracellular medium and extracellular matrix. Some partially or fully insert into TPs during or shortly after TP formation, or bind to the membrane nearby. This process is complex, leading to mostly short-lived structures, with relatively few lasting for long times. We speculate that the characteristic pore lifetimes range from $sim$100 ns to 1,000 s, based on implications from experiments. The frequency-of-occurrence probably falls off extremely rapidly with increasing lifetime, $tau_{CP}$, which implies that most are inaccessible to traditional experimental methods. It also suggests that unexpected behavior can occur early in pulsing, vanishing before post-pulse observations begin.
We consider networks of dynamical units that evolve in time according to different laws, and are coupled to each other in highly irregular ways. Studying how to steer the dynamics of such systems towards a desired evolution is of great practical inte rest in many areas of science, as well as providing insight into the interplay between network structure and dynamical behavior. We propose a pinning protocol for imposing specific dynamic evolutions compatible with the equations of motion on a networked system. The method does not impose any restrictions on the local dynamics, which may vary from node to node, nor on the interactions between nodes, which may adopt in principle any nonlinear mathematical form and be represented by weighted, directed or undirected, links. We first explore our method on small synthetic networks of chaotic oscillators, which allows us to unveil a correlation between the ordered sequence of pinned nodes and their topological influence in the network. We then consider a 12-species trophic web network, which is a model of a mammalian food web. By pinning a relatively small number of species, one can make the system abandon its spontaneous evolution from its (typically uncontrolled) initial state towards a target dynamics, or periodically control it so as to make the populations evolve within stipulated bounds. The relevance of these findings for environment management and conservation is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا