ﻻ يوجد ملخص باللغة العربية
For a two-dimensional lattice $Lambda$ with $n$ vertices, the number of spanning trees $N_{ST}(Lambda)$ grows asymptotically as $exp(n z_Lambda)$ in the thermodynamic limit. We present exact integral expression and numerical value for the asymptotic growth constant $z_Lambda$ for spanning trees on various two-dimensional lattices with more than one type of vertex given in cite{Okeeffe}. An exact closed-form expression for the asymptotic growth constant is derived for net 14, and the asymptotic growth constants of net 27 and the triangle lattice have the simple relation $z_{27} = (z_{tri}+ln 4)/4$. Some integral identities are also obtained.
We calculate exponential growth constants $phi$ and $sigma$ describing the asymptotic behavior of spanning forests and connected spanning subgraphs on strip graphs, with arbitrarily great length, of several two-dimensional lattices, including square,
Consider spanning trees on the two-dimensional Sierpinski gasket SG(n) where stage $n$ is a non-negative integer. For any given vertex $x$ of SG(n), we derive rigorously the probability distribution of the degree $j in {1,2,3,4}$ at the vertex and it
An important problem in statistical physics concerns the fascinating connections between partition functions of lattice models studied in equilibrium statistical mechanics on the one hand and graph theoretical enumeration problems on the other hand.
We present the numbers of ice model and eight-vertex model configurations (with Boltzmann factors equal to one), I(n) and E(n) respectively, on the two-dimensional Sierpinski gasket SG(n) at stage $n$. For the eight-vertex model, the number of config
Levy-type walks with correlated jumps, induced by the topology of the medium, are studied on a class of one-dimensional deterministic graphs built from generalized Cantor and Smith-Volterra-Cantor sets. The particle performs a standard random walk on