ترغب بنشر مسار تعليمي؟ اضغط هنا

Abelian Zero Modes in Odd Dimensions

53   0   0.0 ( 0 )
 نشر من قبل Gerald V. Dunne
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the Loss-Yau zero modes of the 3d abelian Dirac operator may be interpreted in a simple manner in terms of a stereographic projection from a 4d Dirac operator with a constant field strength of definite helicity. This is an alternative to the conventional viewpoint involving Hopf maps from S^3 to S^2. Furthermore, our construction generalizes in a straightforward way to any odd dimension. The number of zero modes is related to the Chern-Simons number in a nonlinear manner.

قيم البحث

اقرأ أيضاً

147 - Manuel Toharia 2008
We consider a real scalar field with an arbitrary negative bulk mass term in a general 5D setup, where the extra spatial coordinate is a warped interval of size $pi R$. When the 5D field verifies Neumann conditions at the boundaries of the interval, the setup will always contain at least one tachyonic KK mode. On the other hand, when the 5D scalar verifies Dirichlet conditions, there is always a critical (negative) mass $M_{c}^2$ such that the Dirichlet scalar is stable as long as its (negative) bulk mass $mu^2$ verifies $M^2_{c}<mu^2$. Also, if we fix the bulk mass $mu^2$ to a sufficiently negative value, there will always be a critical interval distance $pi R_c$ such that the setup is unstable for $R>R_c$. We point out that the best mass (or distance) bound is obtained for the Dirichlet BC case, which can be interpreted as the generalization of the Breitenlohner-Freedman (BF) bound applied to a general compact 5D warped spacetime. In particular, in a slice of $AdS_5$ the critical mass is $M^2_{c}=-4k^2 -1/R^2$ and the critical interval distance is given by $1/R_c^2=|mu^2|-4k^2$, where $k$ is the $AdS_5$ curvature (the 5D flat case can be obtained in the limit $kto 0$, whereas the infinite $AdS_5$ result is recovered in the limit $Rto infty$).
It is shown that on curved backgrounds, the Coulomb gauge Faddeev-Popov operator can have zero modes even in the abelian case. These zero modes cannot be eliminated by restricting the path integral over a certain region in the space of gauge potentia ls. The conditions for the existence of these zero modes are studied for static spherically symmetric spacetimes in arbitrary dimensions. For this class of metrics, the general analytic expression of the metric components in terms of the zero modes is constructed. Such expression allows to find the asymptotic behavior of background metrics, which induce zero modes in the Coulomb gauge, an interesting example being the three dimensional Anti de-Sitter spacetime. Some of the implications for quantum field theory on curved spacetimes are discussed.
Dynamical localization of non-Abelian gauge fields in non-compact flat $D$ dimensions is worked out. The localization takes place via a field-dependent gauge kinetic term when a field condenses in a finite region of spacetime. Such a situation typica lly arises in the presence of topological solitons. We construct four-dimensional low-energy effective Lagrangian up to the quadratic order in a universal manner applicable to any spacetime dimensions. We devise an extension of the $R_xi$ gauge to separate physical and unphysical modes clearly. Out of the D-dimensional non-Abelian gauge fields, the physical massless modes reside only in the four-dimensional components, whereas they are absent in the extra-dimensional components. The universality of non-Abelian gauge charges holds due to the unbroken four-dimensional gauge invariance. We illustrate our methods with models in $D=5$ (domain walls), in $D=6$ (vortices), and in $D=7$.
In this paper we study the zero energy solutions of the Dirac equation in the background of a $Z_2$ vortex of a non-Abelian gauge model with three charged scalar fields. We determine the number of the fermionic zero modes giving their explicit form for two specific Ansatze.
We study the spectrum of fermionic modes on cosmic string loops. We find no fermionic zero modes nor massive bound states - this implies that vortons stabilized by fermionic currents do not exist. We have also studied kink-(anti)kink and vortex-(anti )vortex systems and find that all systems that have vanishing net topological charge do not support fermionic bound modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا