ترغب بنشر مسار تعليمي؟ اضغط هنا

Odd Tachyons in Compact Extra Dimensions

206   0   0.0 ( 0 )
 نشر من قبل Manuel Toharia
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Manuel Toharia




اسأل ChatGPT حول البحث

We consider a real scalar field with an arbitrary negative bulk mass term in a general 5D setup, where the extra spatial coordinate is a warped interval of size $pi R$. When the 5D field verifies Neumann conditions at the boundaries of the interval, the setup will always contain at least one tachyonic KK mode. On the other hand, when the 5D scalar verifies Dirichlet conditions, there is always a critical (negative) mass $M_{c}^2$ such that the Dirichlet scalar is stable as long as its (negative) bulk mass $mu^2$ verifies $M^2_{c}<mu^2$. Also, if we fix the bulk mass $mu^2$ to a sufficiently negative value, there will always be a critical interval distance $pi R_c$ such that the setup is unstable for $R>R_c$. We point out that the best mass (or distance) bound is obtained for the Dirichlet BC case, which can be interpreted as the generalization of the Breitenlohner-Freedman (BF) bound applied to a general compact 5D warped spacetime. In particular, in a slice of $AdS_5$ the critical mass is $M^2_{c}=-4k^2 -1/R^2$ and the critical interval distance is given by $1/R_c^2=|mu^2|-4k^2$, where $k$ is the $AdS_5$ curvature (the 5D flat case can be obtained in the limit $kto 0$, whereas the infinite $AdS_5$ result is recovered in the limit $Rto infty$).


قيم البحث

اقرأ أيضاً

Dynamical localization of non-Abelian gauge fields in non-compact flat $D$ dimensions is worked out. The localization takes place via a field-dependent gauge kinetic term when a field condenses in a finite region of spacetime. Such a situation typica lly arises in the presence of topological solitons. We construct four-dimensional low-energy effective Lagrangian up to the quadratic order in a universal manner applicable to any spacetime dimensions. We devise an extension of the $R_xi$ gauge to separate physical and unphysical modes clearly. Out of the D-dimensional non-Abelian gauge fields, the physical massless modes reside only in the four-dimensional components, whereas they are absent in the extra-dimensional components. The universality of non-Abelian gauge charges holds due to the unbroken four-dimensional gauge invariance. We illustrate our methods with models in $D=5$ (domain walls), in $D=6$ (vortices), and in $D=7$.
117 - Chao Cao , Yi-Xin Chen 2008
The holographic principle asserts that the entropy of a system cannot exceed its boundary area in Planck units. However, conventional quantum field theory fails to describe such systems. In this Letter, we assume the existence of large $n$ extra dime nsions and propose a relationship between UV and IR cutoffs in this case. We find that if $n=2$, this effective field theory could be a good description of holographic systems. If these extra dimensions are detected in future experiments, it will help to prove the validity of the holographic principle. We also discuss implications for the cosmological constant problem.
We discuss a realization of a small field inflation based on string inspired supergravities. In theories accompanying extra dimensions, compactification of them with small radii is required for realistic situations. Since the extra dimension can have a periodicity, there will appear (quasi-)periodic functions under transformations of moduli of the extra dimensions in low energy scales. Such a periodic property can lead to a UV completion of so-called multi-natural inflation model where inflaton potential consists of a sum of multiple sinusoidal functions with a decay constant smaller than the Planck scale. As an illustration, we construct a SUSY breaking model, and then show that such an inflaton potential can be generated by a sum of world sheet instantons in intersecting brane models on extra dimensions containing $T^2/{mathbb Z}_2$ orbifold. We show also predictions of cosmic observables by numerical analyzes.
72 - Taejin Lee 2019
Using string scattering amplitudes of open bosonic string on a single $D$-brane, we construct a local field theoretical action for tachyon fields. Cubic local interactions between various particles, belonging to the particle spectrum of string may be directly followed from three-string scattering amplitude. These cubic local interactions may generate perturbative non-local four-particle interactions, which may contribute to four-string scattering amplitude. It was observed that tachyon field in open bosonic string theory must be represented by a complex field in order to reproduce the Veneziano amplitude, describing four-tachyon scattering. The Veneziano amplitude, expanded in terms of $s$-channel poles was compared with the four-tachyon scattering amplitudes in $s$-channel generated perturbatively and it was found that a quartic potential term is needed in the local field theoretical action, which describes open string theory effectively in the low energy regime. With this quartic term, the tachyon potential has a stable minimum point and the tachyon field may condensate. As a result, both tachyon and gauge fields become massive at Planck scale and completely disappear from the low energy particle spectrum.
We show that the strong CP problem can, in principle, be solved dynamically by adding extra-dimensions with compact topology. To this aim we consider a toy model for QCD, which contains a vacuum angle and a strong CP like problem. We further consider a higher dimensional theory, which has a trivial vacuum structure and which reproduces the perturbative properties of the toy model in the low-energy limit. In the weak coupling regime, where our computations are valid, we show that the vacuum structure of the low-energy action is still trivial and the strong CP problem is solved. No axion-like particle occur in this setup and therefore it is not ruled out by astrophysical bounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا