ترغب بنشر مسار تعليمي؟ اضغط هنا

The Exceptionally Luminous Type II-L SN 2008es

37   0   0.0 ( 0 )
 نشر من قبل Ryan Chornock
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on our early photometric and spectroscopic observations of the extremely luminous Type II supernova (SN) 2008es. With an observed peak optical magnitude of m_V = 17.8 and at a redshift z = 0.213, SN 2008es had a peak absolute magnitude of M_V = -22.3, making it the second most luminous SN ever observed. The photometric evolution of SN 2008es exhibits a fast decline rate (~0.042 mag d^-1), similar to the extremely luminous Type II-L SN 2005ap. We show that SN 2008es spectroscopically resembles the luminous Type II-L SN 1979C. Although the spectra of SN 2008es lack the narrow and intermediate-width line emission typically associated with the interaction of a SN with the circumstellar medium of its progenitor star, we argue that the extreme luminosity of SN 2008es is powered via strong interaction with a dense, optically thick circumstellar medium. The integrated bolometric luminosity of SN 2008es yields a total radiated energy at ultraviolet and optical wavelengths of >10^51 ergs. Finally, we examine the apparently anomalous rate at which the Texas Supernova Search has discovered rare kinds of supernovae, including the five most luminous supernovae observed to date, and find that their results are consistent with those of other modern SN searches.

قيم البحث

اقرأ أيضاً

We report the discovery by the Robotic Optical Transient Experiment (ROTSE-IIIb) telescope of SN 2008es, an overluminous supernova (SN) at z=0.205 with a peak visual magnitude of -22.2. We present multiwavelength follow-up observations with the Swift satellite and several ground-based optical telescopes. The ROTSE-IIIb observations constrain the time of explosion to be 23+/-1 rest-frame days before maximum. The linear decay of the optical light curve, and the combination of a symmetric, broad Halpha emission line profile with broad P Cygni Hbeta and Na I lambda5892 profiles, are properties reminiscent of the bright Type II-L SNe 1979C and 1980K, although SN 2008es is greater than 10 times more luminous. The host galaxy is undetected in pre-supernova Sloan Digital Sky Survey images, and similar to Type II-L SN 2005ap (the most luminous SN ever observed), the host is most likely a dwarf galaxy with M_r > -17. Swift Ultraviolet/Optical Telescope observations in combination with Palomar photometry measure the SED of the SN from 200 to 800 nm to be a blackbody that cools from a temperature of 14,000 K at the time of the optical peak to 6400 K 65 days later. The inferred blackbody radius is in good agreement with the radius expected for the expansion speed measured from the broad lines (10,000 km/s). The bolometric luminosity at the optical peak is 2.8 x 10^44 erg/s, with a total energy radiated over the next 65 days of 5.6 x 10^50 erg. We favor a model in which the exceptional peak luminosity is a consequence of the core-collapse explosion of a progenitor star with a low-mass extended hydrogen envelope and a stellar wind with a density close to the upper limit on the mass-loss rate measured from the lack of an X-ray detection by the Swift X-Ray Telescope. (Abridged).
We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in Fall 2014. The HST light curve of SN Refsdal matches the distinctive, slowly rising light curves of SN 1987A-like supernovae (SNe), and we find strong evidence for a broad H-alpha P-Cygni profile in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show broad and strong H-alpha absorption. From the grism spectrum, we measure an H-alpha expansion velocity consistent with those of SN 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the H-alpha emission of the WFC3 and X-shooter spectra, separated by ~2.5 months in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, SN Refsdal has a blue B-V color and a high luminosity for the assumed range of potential magnifications. If SN Refsdal can be modeled as a scaled version of SN 1987A, we estimate it would have an ejecta mass of 20+-5 solar masses. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material (CSM). Using MOSFIRE and X-shooter spectra, we estimate a subsolar host-galaxy metallicity (8.3+-0.1 dex and <8.4 dex, respectively) near the explosion site.
We present photometric and spectroscopic observations of ASASSN-13co, an unusually luminous Type II supernova and the first core-collapse supernova discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). First detection of the supernova was on UT 2013 August 29 and the data presented span roughly 3.5 months after discovery. We use the recently developed model from Pejcha & Prieto (2015) to model the multi-band light curves of ASASSN-13co and derive the bolometric luminosity curve. We compare ASASSN-13co to other Type II supernovae to show that it was unusually luminous for a Type II supernova and that it exhibited an atypical light curve shape that does not cleanly match that of either a standard Type II-L or Type II-P supernova.
We present observations of the unusually luminous Type II supernova (SN) 2016gsd. With a peak absolute magnitude of V = $-$19.95 $pm$ 0.08, this object is one of the brightest Type II SNe, and lies in the gap of magnitudes between the majority of Typ e II SNe and the superluminous SNe. Its light curve shows little evidence of the expected drop from the optically thick phase to the radioactively powered tail. The velocities derived from the absorption in H$alpha$ are also unusually high with the blue edge tracing the fastest moving gas initially at 20000 km s$^{-1}$, and then declining approximately linearly to 15000 km s$^{-1}$ over $sim$100 d. The dwarf host galaxy of the SN indicates a low-metallicity progenitor which may also contribute to the weakness of the metal lines in its spectra. We examine SN 2016gsd with reference to similarly luminous, linear Type II SNe such as SNe 1979C and 1998S, and discuss the interpretation of its observational characteristics. We compare the observations with a model produced by the JEKYLL code and find that a massive star with a depleted and inflated hydrogen envelope struggles to reproduce the high luminosity and extreme linearity of SN 2016gsd. Instead, we suggest that the influence of interaction between the SN ejecta and circumstellar material can explain the majority of the observed properties of the SN. The high velocities and strong H$alpha$ absorption present throughout the evolution of the SN may imply a circumstellar medium configured in an asymmetric geometry.
We study SN 2006oz, a newly-recognized member of the class of H-poor, super-luminous supernovae. We present multi-color light curves from the SDSS-II SN Survey, that cover the rise time, as well as an optical spectrum that shows that the explosion oc curred at z~0.376. We fitted black body functions to estimate the temperature and radius evolution of the photosphere and used the parametrized code SYNOW to model the spectrum. We constructed a bolometric light curve and compared it with explosion models. The very early light curves show a dip in the g- and r-bands and a possible initial cooling phase in the u-band before rising to maximum light. The bolometric light curve shows a precursor plateau with a duration of 6-10 days in the rest-frame. A lower limit of M_u < -21.5 can be placed on the absolute peak luminosity of the SN, while the rise time is constrained to be at least 29 days. During our observations, the emitting sphere doubled its radius to 2x10^15 cm, while the temperature remained hot at 15000 K. As for other similar SNe, the spectrum is best modeled with elements including O II and Mg II, while we tentatively suggest that Fe III might be present. We suggest that the precursor plateau might be related to a recombination wave in a circumstellar medium (CSM) and discuss whether this is a common property of all similar explosions. The subsequent rise can be equally well described by input from a magnetar or by ejecta-CSM interaction, but the models are not well constrained owing to the lack of post-maximum observations, and CSM interaction has difficulties accounting for the precursor plateau self-consistently. Radioactive decay is less likely to be the mechanism that powers the luminosity. The host galaxy, detected in deep imaging with the 10 m GTC, is a moderately young and star-forming, but not a starburst, galaxy. It has an absolute magnitude of M_g = -16.9.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا