ﻻ يوجد ملخص باللغة العربية
We investigate the dynamics of Rydberg electrons excited from the ground state of ultracold atoms trapped in an optical lattice. We first consider a lattice comprising an array of double-well potentials, where each double well is occupied by two ultracold atoms. We demonstrate the existence of molecular states with equilibrium distances of the order of experimentally attainable inter-well spacings and binding energies of the order of 10^3 GHz. We also consider the situation whereby ground-state atoms trapped in an optical lattice are collectively excited to Rydberg levels, such that the charge-density distributions of neighbouring atoms overlap. We compute the hopping rate and interaction matrix elements between highly-excited electrons separated by distances comparable to typical lattice spacings. Such systems have tunable interaction parameters and a temperature ~10^{-4} times smaller than the Fermi temperature, making them potentially attractive for the study and simulation of strongly correlated electronic systems.
We summarize recent theoretical results for the signatures of strongly correlated ultra-cold fermions in optical lattices. In particular, we focus on: collective mode calculations, where a sharp decrease in collective mode frequency is predicted at t
We experimentally realize Rydberg excitations in Bose-Einstein condensates of rubidium atoms loaded into quasi one-dimensional traps and in optical lattices. Our results for condensates expanded to different sizes in the one-dimensional trap agree we
We develop a formalism for photoionization (PI) and potential energy curves (PECs) of Rydberg atoms in ponderomotive optical lattices and apply it to examples covering several regimes of the optical-lattice depth. The effect of lattice-induced PI on
We study the two-body bound and scattering states of two particles in a one dimensional optical lattice in the presence of a coherent coupling between two internal atomic levels. Due to the interplay between periodic potential, interactions and coher
We point out some major technical and conceptual mistakes which invalidate the conclusion drawn in Anyonic braiding in optical lattices by C. Zhang, V. W. Scarola, S. Tewari, and S. Das Sarma published in PNAS 104, 18415 (2007).