ترغب بنشر مسار تعليمي؟ اضغط هنا

Warm Inflation and its Microphysical Basis

139   0   0.0 ( 0 )
 نشر من قبل Arjun Berera
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The microscopic quantum field theory origins of warm inflation dynamics are reviewed. The warm inflation scenario is first described along with its results, predictions and comparison with the standard cold inflation scenario. The basics of thermal field theory required in the study of warm inflation are discussed. Quantum field theory real time calculations at finite temperature are then presented and the derivation of dissipation and stochastic fluctuations are shown from a general perspective. Specific results are given of dissipation coefficients for a variety of quantum field theory interaction structures relevant to warm inflation, in a form that can readily be used by model builders. Different particle physics models realising warm inflation are presented along with their observational predictions.



قيم البحث

اقرأ أيضاً

We show that, for values of the axion decay constant parametrically close to the GUT scale, the Peccei-Quinn phase transition may naturally occur during warm inflation. This results from interactions between the Peccei-Quinn scalar field and the ambi ent thermal bath, which is sustained by the inflaton field through dissipative effects. It is therefore possible for the axion field to appear as a dynamical degree of freedom only after observable CMB scales have become super-horizon, thus avoiding the large-scale axion isocurvature perturbations that typically plague such models. This nevertheless yields a nearly scale-invariant spectrum of axion isocurvature perturbations on small scales, with a density contrast of up to a few percent, which may have a significant impact on the formation of gravitationally-bound axion structures such as mini-clusters.
We show that, in warm inflation, the nearly constant Hubble rate and temperature lead to an adiabatic evolution of the number density of particles interacting with the thermal bath, even if thermal equilibrium cannot be maintained. In this case, the number density is suppressed compared to the equilibrium value but the associated phase-space distribution retains approximately an equilibrium form, with a smaller amplitude and a slightly smaller effective temperature. As an application, we explicitly construct a baryogenesis mechanism during warm inflation based on the out-of-equilibrium decay of particles in such an adiabatically evolving state. We show that this generically leads to small baryon isocurvature perturbations, within the bounds set by the Planck satellite. These are correlated with the main adiabatic curvature perturbations but exhibit a distinct spectral index, which may constitute a smoking gun for baryogenesis during warm inflation. Finally, we discuss the prospects for other applications of adiabatically evolving out-of-equilibrium states.
The de Sitter constraint on the space of effective scalar field theories consistent with superstring theory provides a lower bound on the slope of the potential of a scalar field which dominates the evolution of the Universe, e.g., a hypothetical inf laton field. Whereas models of single scalar field inflation with a canonically normalized field do not obey this constraint, it has been claimed recently in the literature that models of warm inflation can be made compatible with it in the case of large dissipation. The de Sitter constraint is known to be derived from entropy considerations. Since warm inflation necessary involves entropy production, it becomes necessary to determine how this entropy production will affect the constraints imposed by the swampland conditions. Here, we generalize these entropy considerations to the case of warm inflation and show that the condition on the slope of the potential remains essentially unchanged and is, hence, robust even in the warm inflation dynamics. We are then able to conclude that models of warm inflation indeed can be made consistent with the swampland criteria.
Slow-roll inflation is a successful paradigm. However we find that even a small coupling of the inflaton to other light fields can dramatically alter the dynamics and predictions of inflation. As an example, the inflaton can generically have an axion -like coupling to gauge bosons. Even relatively small couplings will automatically induce a thermal bath during inflation. The thermal friction from this bath can easily be stronger than Hubble friction, significantly altering the usual predictions of any particular inflaton potential. Thermal effects suppress the tensor-to-scalar ratio $r$ significantly, and predict unique non-gaussianities. This axion-like coupling provides a minimal model of warm inflation which avoids the usual problem of thermal backreaction on the inflaton potential. As a specific example, we find that hybrid inflation with this axion-like coupling can easily fit the current cosmological data.
In this work we explore the effects that a possible primordial magnetic field can have on the inflaton effective potential, taking as the underlying model a warm inflation scenario, based on global supersymmetry with a new-inflation-type potential. T he decay scheme for the inflaton field is a two-step process of radiation production, where the inflaton couples to heavy intermediate superfields, which in turn interact with light particles. In this context, we consider that both sectors, heavy and light, are charged and work in the strong magnetic field approximation for the light fields. We find an analytical expression for the one-loop effective potential, for an arbitrary magnetic field strength, and show that the trend of the magnetic contribution is to make the potential flatter, preserving the conditions for a successful inflationary process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا