ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupling MOAO with Integral Field Spectroscopy: specifications for the VLT and the E-ELT

110   0   0.0 ( 0 )
 نشر من قبل Mathieu Puech
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Abridged] We have developed an end-to-end simulation to specify the science requirements of a MOAO-fed integral field spectrograph on either an 8m or 42m telescope. Our simulations re-scales observations of local galaxies or results from numerical simulations of disk or interacting galaxies. For the current analysis, we limit ourselves to a local disk galaxy which exhibits simple rotation and a simulation of a merger. We have attempted to generalize our results by introducing the simple concepts of PSF contrast which is the amount of light polluting adjacent spectra which we find drives the smallest EE at a given spatial scale. The choice of the spatial sampling is driven by the scale-coupling, i.e., the relationship between the IFU pixel scale and the size of the features that need to be recovered by 3D spectroscopy in order to understand the nature of the galaxy and its substructure. Because the dynamical nature of galaxies are mostly reflected in their large-scale motions, a relatively coarse spatial resolution is enough to distinguish between a rotating disk and a major merger. Although we used a limited number of morpho-kinematic cases, our simulations suggest that, on a 42m telescope, the choice of an IFU pixel scale of 50-75 mas seems to be sufficient. Such a coarse sampling has the benefit of lowering the exposure time to reach a specific signal-to-noise as well as relaxing the performance of the MOAO system. On the other hand, recovering the full 2D-kinematics of z~4 galaxies requires high signal-to-noise and at least an EE of 34% in 150 mas (2 pixels of 75 mas). Finally, we carried out a similar study at z=1.6 with a MOAO-fed spectrograph for an 8m, and find that at least an EE of 30% at 0.25 arcsec spatial sampling is required to understand the nature of disks and mergers.



قيم البحث

اقرأ أيضاً

We present the results of H- and K-band VLT/SINFONI integral field spectroscopy of the ULIRG IRAS 19254-7245 (The Super-antennae), an interacting double galaxy system containing an embedded AGN. Deep K-band spectroscopy reveals PaAlpha arising in a w arped disc with position angle of 330 degree and an inclination i=40-55 degree. The kinemetric parameters derived for H2 are similar to PaAlpha. Two high-ionization emission lines, [SiVI] and [AlIX], are detected and we identify as [NiII] the line observed at 1.94 micron. Diluting non-stellar continuum, which was previously detected, has decayed, and the H-band continuum emission is consistent with pure stellar emission. Based on H2 emission line ratios it is likely that at the central 1-kpc region H2 is excited by UV fluorescence in dense clouds while shock excitation is dominant further out. This scenario is supported by very low PaAlpha to H2 line ratio detected outside the nuclear region and non-thermal ortho/para ratios (~2.0 - 2.5) close to the nucleus.
126 - Y. G. Tsamis 2006
Recent weak emission-line long-slit surveys and modelling studies of PNe have convincingly argued in favour of the existence of an unknown component in the planetary nebula plasma consisting of cold, hydrogen-deficient gas, as an explanation for the long-standing recombination-line versus forbidden-line temperature and abundance discrepancy problems. Here we describe the rationale and initial results from a detailed spectroscopic study of three Galactic PNe undertaken with the VLT FLAMES integral-field unit spectrograph, which advances our knowledge about the small-scale physical properties, chemical abundances and velocity structure of these objects across a two-dimensional field of view, and opens up for exploration an uncharted territory in the study and modelling of PNe and photoionized nebulae in general.
615 - Y. G. Tsamis 2008
(Abridged) Results from the first dedicated study of Galactic PNe by means of optical integral field spectroscopy with the VLT FLAMES Argus IFU are presented. Three typical Galactic-disk PNe have been mapped with the 11.5x7.2 Argus array: two dimensi onal spectral maps of NGC 5882, 6153 and 7009 with 297 spatial pixels per target were obtained at sub-arcsec resolutions and 297 spectra per target were obtained in the 396.4-507.8 nm range. Spatially resolved maps of emission lines and of nebular physical properties were produced. The abundances of helium and of doubly ionized carbon and oxygen were derived from optical recombination lines (ORLs), while those of O^2+ were also derived from the collisionally excited lines (CELs). The abundance discrepancy problem was investigated by mapping the ratio of ORL/CEL abundances for O^2+ (the abundance discrepancy factor; ADF) across the face of the PNe. The ADF varies between targets and also with position within the targets attaining values of ~40 in the case of NGC 6153. Correlations of the ADF with geometric distance from the nucleus, as well as with [O III] electron temperature, plasma ionization state and other physical properties are established. Very small values of the temperature fluctuation parameter in the plane of the sky are found in all cases. It is argued that these results provide further evidence for the existence in typical PNe of a distinct nebular component consisting of hydrogen-deficient plasma. The zones containing this posited component appear as undulations in the C II and C II ORL abundance diagnostics of about 2 spatial pixels across; any associated structures should have physical sizes of less than ~1000 astronomical units. We propose that circumstellar disks, Abell 30-type knots, or Helix-type cometary globules may be involved.
261 - R.P. Mignani 2010
So far, 24 Isolated neutron stars (INSs) of different types have been identified at optical wavelengths, from the classical radio pulsars to more peculiar objects, like the magnetars. Most identifications have been obtained in the last 20 years thank s to the deployment of modern technology telescopes, above all the HST, but also the NTT and, later, the 8m-class telescopes like the VLT. The larger identification rate has increased the impact factor of optical observations in the multi-wavelength approach to INS astronomy, opening interesting possibilities for studies not yet possible at other wavelengths. With the HST on the way to its retirement, 8m class telescopes will have the task of bridging neutron star optical astronomy into a new era, characterised by the advent of the generation of extremely large telescopes (ELTs), like the European ELT (E-ELT). This will mark a major step forward in the field, enabling one to identify many more INSs, many of which from follow-ups of observations performed with future radio and X-ray megastruscture facilities like SKA and IXO. Moreover, the E-ELT will make it possible to carry out observations, like timing, spectroscopy, and polarimetry, which still represent a challenge for 8m-class telescopes and are, in many respects, crucial for studies on the structure and composition of the neutron star interior and of its magnetosphere. In this contribution, I briefly summarise the current status of INS optical observations, describe the main science goals for the E-ELT, and their impact on neutron star physics.
Knowledge of the Earths atmospheric optical turbulence is critical for astronomical instrumentation. Not only does it enable performance verification and optimisation of existing systems but it is required for the design of future instruments. As a m inimum this includes integrated astro-atmospheric parameters such as seeing, coherence time and isoplanatic angle, but for more sophisticated systems such as wide field adaptive optics enabled instrumentation the vertical structure of the turbulence is also required. Stereo-SCIDAR is a technique specifically designed to characterise the Earths atmospheric turbulence with high altitude resolution and high sensitivity. Together with ESO, Durham University has commissioned a Stereo-SCIDAR instrument at Cerro Paranal, Chile, the site of the Very Large Telescope (VLT), and only 20~km from the site of the future Extremely Large Telescope (ELT). Here we provide results from the first 18 months of operation at ESO Paranal including instrument comparisons and atmospheric statistics. Based on a sample of 83 nights spread over 22 months covering all seasons, we find the median seeing to be 0.64 with 50% of the turbulence confined to an altitude below 2 km and 40% below 600 m. The median coherence time and isoplanatic angle are found as 4.18 ms and 1.75 respectively. A substantial campaign of inter-instrument comparison was also undertaken to assure the validity of the data. The Stereo-SCIDAR profiles (optical turbulence strength and velocity as a function of altitude) have been compared with the Surface-Layer SLODAR, MASS-DIMM and the ECMWF weather forecast model. The correlation coefficients are between 0.61 (isoplanatic angle) and 0.84 (seeing).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا