ترغب بنشر مسار تعليمي؟ اضغط هنا

VLT/SINFONI Integral Field Spectroscopy of The Super-antennae

117   0   0.0 ( 0 )
 نشر من قبل Juha Reunanen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of H- and K-band VLT/SINFONI integral field spectroscopy of the ULIRG IRAS 19254-7245 (The Super-antennae), an interacting double galaxy system containing an embedded AGN. Deep K-band spectroscopy reveals PaAlpha arising in a warped disc with position angle of 330 degree and an inclination i=40-55 degree. The kinemetric parameters derived for H2 are similar to PaAlpha. Two high-ionization emission lines, [SiVI] and [AlIX], are detected and we identify as [NiII] the line observed at 1.94 micron. Diluting non-stellar continuum, which was previously detected, has decayed, and the H-band continuum emission is consistent with pure stellar emission. Based on H2 emission line ratios it is likely that at the central 1-kpc region H2 is excited by UV fluorescence in dense clouds while shock excitation is dominant further out. This scenario is supported by very low PaAlpha to H2 line ratio detected outside the nuclear region and non-thermal ortho/para ratios (~2.0 - 2.5) close to the nucleus.

قيم البحث

اقرأ أيضاً

220 - X. Mazzalay 2013
We present an analysis of the H2 emission-line gas kinematics in the inner < 4 arcsec radius of six nearby spiral galaxies, based on AO-assisted integral-field observations obtained in the K-band with SINFONI/VLT. Four of the six galaxies in our samp le display ordered H2 velocity fields, consistent with gas moving in the plane of the galaxy and rotating in the same direction as the stars. However, the gas kinematics is typically far from simple circular motion. We can classify the observed velocity fields into four different types of flows, ordered by increasing complexity: (1) circular motion in a disc (NGC3351); (2) oval motion in the galaxy plane (NGC3627 and NGC4536); (3) streaming motion superimposed on circular rotation (NGC4501); and (4) disordered streaming motions (NGC4569 and NGC4579). The H2 velocity dispersion in the galaxies is usually higher than 50 km/s in the inner 1-2 arcsec radii. The four galaxies with ordered kinematics have v/sigma < 1 at radii less than 40-80 pc. The radius at which v/sigma = 1 is independent of the type of nuclear activity. While the low values of v/sigma could be taken as an indication of a thick disc in the innermost regions of the galaxies, other lines of evidence (e.g. H2 morphologies and velocity fields) argue for a thin disc interpretation in the case of NGC3351 and NGC4536. We discuss the implications of the high values of velocity dispersion for the dynamics of the gaseous disc and suggest caution when interpreting the velocity dispersion of ionized and warm tracers as being entirely dynamical. Understanding the nature and role of the velocity dispersion in the gas dynamics, together with the full 2D information of the gas, is essential for obtaining accurate black hole masses from gas kinematics.
115 - X. Mazzalay 2012
We present the first results of an analysis of the properties of the molecular gas in the nuclear regions (r < 300 pc) of a sample of six nearby galaxies, based on new high spatial resolution observations obtained in the K-band with the near-infrared integral field spectrograph SINFONI at the Very Large Telescope. We derive two-dimensional distributions of the warm molecular and ionized gas from the H2, Br_gamma and HeI emission lines present in the spectra of the galaxies. We find a range of morphologies, including bar- and ring-like distributions and either centrally peaked or off-centre emission. The morphologies of the molecular and the ionized gas are not necessarily coincident. The observed emission-line ratios point towards thermal processes as the principal mechanism responsible for the H2 excitation in the nuclear and circumnuclear regions of the galaxies, independently of the presence of an active nucleus. We find that a rescaling of the H2 2.12 microns emission-line luminosity by a factor beta~1200 gives a good estimate (within a factor of 2) of the total (cold) molecular gas mass. The galaxies of the sample contain large quantities of molecular gas in their centres, with total masses in the ~ 105 - 108 Msol range. Never the less, these masses correspond to less than 3 per cent of the stellar masses derived for the galaxies in these regions, indicating that the presence of gas should not affect black hole mass estimates based on the dynamical modelling of the stars. The high-spatial resolution provided by the SINFONI data allowed us to resolve a circumnuclear ring (with a radius of ~270 pc) in the galaxy NGC 4536. The measured values of the Br_gamma equivalent width and the HeI/Br_gamma emission-line ratio suggests that bursts of star formation occurred throughout this ring as recently as 6.5 Myr ago.
126 - Y. G. Tsamis 2006
Recent weak emission-line long-slit surveys and modelling studies of PNe have convincingly argued in favour of the existence of an unknown component in the planetary nebula plasma consisting of cold, hydrogen-deficient gas, as an explanation for the long-standing recombination-line versus forbidden-line temperature and abundance discrepancy problems. Here we describe the rationale and initial results from a detailed spectroscopic study of three Galactic PNe undertaken with the VLT FLAMES integral-field unit spectrograph, which advances our knowledge about the small-scale physical properties, chemical abundances and velocity structure of these objects across a two-dimensional field of view, and opens up for exploration an uncharted territory in the study and modelling of PNe and photoionized nebulae in general.
We present 0.5 resolution near-IR integral field spectroscopy of the Ha line emission of 14 z~2 UV-selected BM/BX galaxies obtained with SINFONI at ESO/VLT. The mean Ha half-light radius r_1/2 is about 4kpc and line emission is detected over > ~20kpc in several sources. In 9 sources, we detect spatially-resolved velocity gradients, from 40 to 410 km/s over ~10kpc. The observed kinematics of the larger systems are consistent with orbital motions. Four galaxies are well described by rotating disks with clumpy morphologies and we extract rotation curves out to radii > ~10kpc. One or two galaxies exhibit signatures more consistent with mergers. Analyzing all 14 galaxies in the framework of rotating disks, we infer mean inclination- and beam-corrected maximum circular velocities v_c of 180+-90 km/s and dynamical masses of (0.5-25)x10^10 Msun within r_1/2. On average, the dynamical masses are consistent with photometric stellar masses assuming a Chabrier/Kroupa IMF but too small for a 0.1-100 Msun Salpeter IMF. The specific angular momenta of our BM/BX galaxies are similar to those of local late-type galaxies. The specific angular momenta of their baryons are comparable to those of their dark matter halos. Extrapolating from the average v_c at 10kpc, the virial mass of the typical halo of a galaxy in our sample is 10^(11.7+-0.5) Msun. Kinematic modeling of the 3 best cases implies a ratio of v_c to local velocity dispersion of order 2-4 and accordingly a large geometric thickness. We argue that this suggests a mass accretion (alternatively, gas exhaustion) timescale of ~500Myr. We also argue that if our BM/BX galaxies were initially gas rich, their clumpy disks will subsequently lose their angular momentum and form compact bulges on a timescale of ~1 Gyr. [ABRIDGED]
63 - M. Puech , H. Flores , M. Lehnert 2008
[Abridged] We have developed an end-to-end simulation to specify the science requirements of a MOAO-fed integral field spectrograph on either an 8m or 42m telescope. Our simulations re-scales observations of local galaxies or results from numerical s imulations of disk or interacting galaxies. For the current analysis, we limit ourselves to a local disk galaxy which exhibits simple rotation and a simulation of a merger. We have attempted to generalize our results by introducing the simple concepts of PSF contrast which is the amount of light polluting adjacent spectra which we find drives the smallest EE at a given spatial scale. The choice of the spatial sampling is driven by the scale-coupling, i.e., the relationship between the IFU pixel scale and the size of the features that need to be recovered by 3D spectroscopy in order to understand the nature of the galaxy and its substructure. Because the dynamical nature of galaxies are mostly reflected in their large-scale motions, a relatively coarse spatial resolution is enough to distinguish between a rotating disk and a major merger. Although we used a limited number of morpho-kinematic cases, our simulations suggest that, on a 42m telescope, the choice of an IFU pixel scale of 50-75 mas seems to be sufficient. Such a coarse sampling has the benefit of lowering the exposure time to reach a specific signal-to-noise as well as relaxing the performance of the MOAO system. On the other hand, recovering the full 2D-kinematics of z~4 galaxies requires high signal-to-noise and at least an EE of 34% in 150 mas (2 pixels of 75 mas). Finally, we carried out a similar study at z=1.6 with a MOAO-fed spectrograph for an 8m, and find that at least an EE of 30% at 0.25 arcsec spatial sampling is required to understand the nature of disks and mergers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا