ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid Molecular Cloud and Star Formation: Mechanisms and Movies

35   0   0.0 ( 0 )
 نشر من قبل Fabian Heitsch
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that the observationally inferred rapid onset of star formation after parental molecular clouds have assembled can be achieved by flow-driven cloud formation of atomic gas, using our previous three-dimensional numerical simulations. We post-process these simulations to approximate CO formation, which allows us to investigate the times at which CO becomes abundant relative to the onset of cloud collapse. We find that global gravity in a finite cloud has two crucial effects on cloud evolution. (a) Lateral collapse (perpendicular to the flows sweeping up the cloud) leads to rapidly increasing column densities above the accumulation from the one-dimensional flow. This in turn allows fast formation of CO, allowing the molecular cloud to ``appear rapidly. (b) Global gravity is required to drive the dense gas to the high pressures necessary to form solar-mass cores, in support of recent analytical models of cloud fragmentation. While the clouds still appear ``supersonically turbulent, this turbulence is relegated to playing a secondary role, in that it is to some extent a consequence of gravitational forces.

قيم البحث

اقرأ أيضاً

Does star formation proceed in the same way in large spirals such as the Milky Way and in smaller chemically younger galaxies? Earlier work suggests a more rapid transformation of H$_2$ into stars in these objects but (1) a doubt remains about the va lidity of the H$_2$ mass estimates and (2) there is currently no explanation for why star formation should be more efficient. M~33, a local group spiral with a mass $sim 10$% and a metallicity half that of the Galaxy, represents a first step towards the metal poor Dwarf Galaxies. We have searched for molecular clouds in the outer disk of M~33 and present here a set of detections of both $^{12}$CO and $^{13}$CO, including the only detections (for both lines) beyond the R$_{25}$ radius in a subsolar metallicity galaxy. The spatial resolution enables mass estimates for the clouds and thus a measure of the $N({rm H}_2) / I_{rm CO}$ ratio, which in turn enables a more reliable calculation of the H$_2$ mass. Our estimate for the outer disk of M~33 is $N({rm H}_2) / I_{rm CO(1-0)} sim 5 times 10^{20} ,{rm cm^{-2}/(K{rm km s^{-1}})}$ with an estimated uncertainty of a factor $le 2$. While the $^{12/13}$CO line ratios do not provide a reliable measure of $N({rm H}_2) / I_{rm CO}$, the values we find are slightly greater than Galactic and corroborate a somewhat higher $N({rm H}_2) / I_{rm CO}$ value. Comparing the CO observations with other tracers of the interstellar medium, no reliable means of predicting where CO would be detected was identified. In particular, CO detections were often not directly on local HI or FIR or H$alpha$ peaks, although generally in regions with FIR emission and high HI column density. The results presented here provide support for the quicker transformation of H$_2$ into stars in M~33 than in large local universe spirals.
We present a multi-wavelength study to probe the star formation (SF) processes on a larger scale (~1.05 deg x 0.56 deg) around the S242 site. The S242 molecular cloud is depicted in a velocity range from -3.25 to 4.55 km/s and has spatially elongated appearance. Based on the virial analysis, the cloud is prone to gravitational collapse. The cloud harbors an elongated filamentary structure (EFS; length ~25 pc) evident in the Herschel column density map and the EFS has an observed mass per unit length of ~200 M_sun/pc exceeding the critical value of ~16 M_sun/pc (at T = 10 K). The EFS contains a chain of Herschel clumps (M_clump ~150 to 1020 M_sun), revealing the evidence of fragmentation along its length. The most massive clumps are observed at both the EFS ends, while the S242 HII region is located at one EFS end. Based on the radio continuum maps at 1.28 and 1.4 GHz, the S242 HII region is ionized by a B0.5V - B0V type star and has a dynamical age of ~0.5 Myr. The photometric 1 - 5 microns data analysis of point-like sources traces young stellar objects (YSOs) toward the EFS and the clusters of YSOs are exclusively found at both the EFS ends, revealing the SF activities. Considering the spatial presence of massive clumps and YSO clusters at both the EFS ends, the observed results are consistent with the prediction of a SF scenario of the end-dominated collapse driven by the higher accelerations of gas.
103 - C. M. Booth 2007
We describe a numerical implementation of star formation in disk galaxies, in which the conversion of cooling gas to stars in the multiphase interstellar medium is governed by the rate at which molecular clouds are formed and destroyed. In the model, clouds form from thermally unstable ambient gas and get destroyed by feedback from massive stars and thermal conduction. Feedback in the ambient phase cycles gas into a hot galactic fountain or wind. We model the ambient gas hydrodynamically using smoothed particle hydrodynamics (SPH). However, we cannot resolve the Jeans mass in the cold and dense molecular gas and, therefore, represent the cloud phase with ballistic particles that coagulate when colliding. We show that this naturally produces a multiphase medium with cold clouds, a warm disk, hot supernova bubbles and a hot, tenuous halo. Our implementation of this model is based on the Gadget N-Body code. We illustrate the model by evolving an isolated Milky Way-like galaxy and study the properties of a disk formed in a rotating spherical collapse. Many observed properties of disk galaxies are reproduced well, including the molecular cloud mass spectrum, the molecular fraction as a function of radius, the Schmidt law, the stellar density profile and the appearance of a galactic fountain.
Star formation is a fundamental process for galactic evolution. One issue over the last several decades has been determining whether star formation is induced by external triggers or is self-regulated in a closed system. The role of an external trigg er, which can effectively collect mass in a small volume, has attracted particular attention in connection with the formation of massive stellar clusters, which in the extreme may lead to starbursts. Recent observations have revealed massive cluster formation triggered by cloud-cloud collisions in nearby interacting galaxies, including the Magellanic system and the Antennae Galaxies as well as almost all well-known high-mass star-forming regions such as RCW 120, M20, M42, NGC 6334, etc., in the Milky Way. Theoretical efforts are laying the foundation for the mass compression that causes massive cluster/star formation. Here, we review the recent progress on cloud-cloud collisions and triggered star-cluster formation and discuss the future prospects for this area of research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا