ترغب بنشر مسار تعليمي؟ اضغط هنا

A Necessary Condition for Individual Time-Steps in SPH Simulations

31   0   0.0 ( 0 )
 نشر من قبل Takayuki R. Saitoh
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the smoothed particle hydrodynamics (SPH) method, used with individual time-steps in the way described in the literature, cannot handle strong explosion problems correctly. In the individual time-step scheme, particles determine their time-steps essentially from a local Courant condition. Thus they cannot respond to a strong shock, if the pre-shock timescale is too long compared to the shock timescale. This problem is not severe in SPH simulations of galaxy formation with a temperature cutoff in the cooling function at $10^4 {rm K}$, while it is very dangerous for simulations in which the multiphase nature of the interstellar medium under $10^4 {rm K}$ is taken into account. A solution for this problem is to introduce a time-step limiter which reduces the time-step of a particle if it is too long compared to the time-steps of its neighbor particles. Thus this kind of time-step constraint is essential for the correct treatment of explosions in high-resolution SPH simulations with individual time-steps.

قيم البحث

اقرأ أيضاً

In order to analyze joint measurability of given measurements, we introduce a Hermitian operator-valued measure, called $W$-measure, such that it has marginals of positive operator-valued measures (POVMs). We prove that ${W}$-measure is a POVM {em if and only if} its marginal POVMs are jointly measurable. The proof suggests to employ the negatives of ${W}$-measure as an indicator for non-joint measurability. By applying triangle inequalities to the negativity, we derive joint measurability criteria for dichotomic and trichotomic variables. Also, we propose an operational test for the joint measurability in sequential measurement scenario.
The electrostatic model proposed by Poulos [Phys. Plasmas (2019), $mathbf{26}$, 022104] to describe the electric potential distribution across and along a magnetized plasma column is used to shed light onto the ability to control perpendicular electr ic fields. The effective electrical connection between facing end-electrodes is shown to be conditioned upon the smallness of a dimensionless parameter $tau$ function of the plasma column aspect ratio and the square root of the conductivity ratio $sigma_perp/sigma_{parallel}$. The analysis of a selected set of past end-electrodes biasing experiments confirms that this parameter is small in experiments that have successfully demonstrated perpendicular electric field tailoring. On the other hand, this parameter is $mathcal{O}(1)$ in experiments that failed to demonstrate control, pointing to an excessively large ion-neutral collision frequency. A better understanding of the various contributions to $sigma_perp$ is needed to gain further insights into end-biasing experimental results.
In arXiv:1910.12059 Liu, Palcoux and Wu proved a remarkable necessary condition for a fusion ring to admit a unitary categorification, by constructing invariants of the fusion ring that have to be positive if it is unitarily categorifiable. The main goal of this note is to provide a somewhat more direct proof of this result. In the last subsection we discuss integrality properties of the Liu-Palcoux-Wu invariants.
We numerically investigate the dynamics of a supernova fallback accretion confronting with a relativistic wind from a newborn neutron star (NS). The time evolution of the accretion shock in the radial direction is basically characterized by the encou nter radius of the flow $r_mathrm{enc}$ and a dimensionless parameter $zeta equiv L/dot M_mathrm{fb}c^2$, where $L$ is the NS wind luminosity and $dot M_mathrm{fb}$ is the fallback mass accretion rate. We find that the critical condition for the fallback matter to reach near the NS surface can be simply described as $zeta < zeta_mathrm{min} equiv GM_*/c^2r_mathrm{enc}$ or $r_mathrm{enc}L/G M_* dot M_mathrm{fb} < 1$ independent of the wind Lorentz factor, where $M_*$ is the NS mass. With combining the condition for the fallback matter to bury the surface magnetic field under the NS crust, we discuss the possibility that the trifurcation of NSs into rotation-powered pulsars, central compact objects (CCOs), and magnetars can be induced by supernova fallback.
This paper considers dynamic networks where vertices and edges represent manifest signals and causal dependencies among the signals, respectively. We address the problem of how to determine if the dynamics of a network can be identified when only par tial vertices are measured and excited. A necessary condition for network identifiability is presented, where the analysis is performed based on identifying the dependency of a set of rational functions from excited vertices to measured ones. This condition is further characterised by using an edge-removal procedure on the associated bipartite graph. Moreover, on the basis of necessity analysis, we provide a necessary and sufficient condition for identifiability in circular networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا