ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity of hexagonal heavily-boron doped silicon carbide

239   0   0.0 ( 0 )
 نشر من قبل Markus Kriener
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In 2004 the discovery of superconductivity in heavily boron-doped diamond (C:B) led to an increasing interest in the superconducting phases of wide-gap semiconductors. Subsequently superconductivity was found in heavily boron-doped cubic silicon (Si:B) and recently in the stochiometric mixture of heavily boron-doped silicon carbide (SiC:B). The latter system surprisingly exhibits type-I superconductivity in contrast to the type-II superconductors C:B and Si:B. Here we will focus on the specific heat of two different superconducting samples of boron-doped SiC. One of them contains cubic and hexagonal SiC whereas the other consists mainly of hexagonal SiC without any detectable cubic phase fraction. The electronic specific heat in the superconducting state of both samples SiC:B can be described by either assuming a BCS-type exponentional temperature dependence or a power-law behavior.

قيم البحث

اقرأ أيضاً

161 - M. Kriener , T. Muranaka , J. Kato 2008
The discoveries of superconductivity in heavily boron-doped diamond (C:B) in 2004 and silicon (Si:B) in 2006 renew the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily-boron doped silicon carbide (SiC:B). The sample used for that study consists of cubic and hexagonal SiC phase fractions and hence this lead to the question which of them participates in the superconductivity. Here we focus on a sample which mainly consists of hexagonal SiC without any indication for the cubic modification by means of x-ray diffraction, resistivity, and ac susceptibility.
81 - M. Kriener , Y. Maeno , T. Oguchi 2008
The discoveries of superconductivity in the heavily-boron doped semiconductors diamond (C:B) in 2004 and silicon (Si:B) in 2006 have renewed the interest in the physics of the superconducting state of doped semiconductors. Recently, we discovered sup erconductivity in the closely related mixed system heavily boron-doped silcon carbide (SiC:B). Interestingly, the latter compound is a type-I superconductor whereas the two aforementioned materials are type-II. In this paper we present an extensive analysis of our recent specific-heat study, as well as the band structure and expected Fermi surfaces. We observe an apparent quadratic temperature dependence of the electronic specific heat in the superconducting state. Possible reasons are a nodal gap structure or a residual density of states due to non-superconducting parts of the sample. The basic superconducting parameters are estimated in a Ginzburg-Landau framework. We compare and discuss our results with those reported for C:B and Si:B. Finally, we comment on possible origins of the difference in the superconductivity of SiC:B compared to the two parent materials C:B and Si:B.
117 - K.-W. Lee , W. E. Pickett 2004
Superconductivity of boron-doped diamond, reported recently at T_c=4 K, is investigated exploiting its electronic and vibrational analogies to MgB2. The deformation potential of the hole states arising from the C-C bond stretch mode is 60% larger tha n the corresponding quantity in MgB2 that drives its high Tc, leading to very large electron-phonon matrix elements. The calculated coupling strength lambda ~ 0.5 leads to T_c in the 5-10 K range and makes phonon coupling the likely mechanism. Higher doping should increase T_c somewhat, but effects of three dimensionality primarily on the density of states keep doped diamond from having a T_c closer to that of MgB2.
We consider superconductivity in boron (B) doped diamond using a simplified model for the valence band of diamond. We treat the effects of substitutional disorder of B ions by the coherent potential approximation (CPA) and those of the attractive for ce between holes by the ladder approximation under the assumption of instantaneous interaction with the Debye cutoff. We thereby calculate the quasiparticle life time, the evolution of the single-particle spectra due to doping, and the effect of disorder on the superconducting critical temperature $T_c$. We in particular compare our results with those for supercell calculations to see the role of disorder, which turns out to be of crucial importance to $T_c$.
Recent theoretical and experimental studies of hydrogen-rich materials at megabar pressures (i.e., >100 GPa) have led to the discovery of very high-temperature superconductivity in these materials. Lanthanum superhydride LaH$_{10}$ has been of partic ular focus as the first material to exhibit a superconducting critical temperature (T$_c$) near room temperature. Experiments indicate that the use of ammonia borane as the hydrogen source can increase the conductivity onset temperatures of lanthanum superhydride to as high as 290 K. Here we examine the doping effects of B and N atoms on the superconductivity of LaH$_{10}$ in its fcc (Fm-3m) clathrate structure at megabar pressures. Doping at H atomic positions strengthens the H$_{32}$ cages of the structure to give higher phonon frequencies that enhance the Debye frequency and thus the calculated T$_c$. The predicted T$_c$ can reach 288 K in LaH$_{9.985}$N$_{0.015}$ within the average high-symmetry structure at 240 GPa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا