ترغب بنشر مسار تعليمي؟ اضغط هنا

Southern Cosmology Survey I: Optical Cluster Detections and Predictions for the Southern Common-Area Millimeter-Wave Experiments

107   0   0.0 ( 0 )
 نشر من قبل Felipe Menanteau
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present first results from the Southern Cosmology Survey, a new multiwavelength survey of the southern sky coordinated with the Atacama Cosmology Telescope (ACT), a recently commissioned ground-based mm-band Cosmic Microwave Background experiment. This article presents a full analysis of archival optical multi-band imaging data covering an 8 square degree region near right ascension 23 hours and declination -55 degrees, obtained by the Blanco 4-m telescope and Mosaic-II camera in late 2005. We describe the pipeline we have developed to process this large data volume, obtain accurate photometric redshifts, and detect optical clusters. Our cluster finding process uses the combination of a matched spatial filter, photometric redshift probability distributions and richness estimation. We present photometric redshifts, richness estimates, luminosities, and masses for 8 new optically-selected clusters with mass greater than $3times10^{14}M_{sun}$ at redshifts out to 0.7. We also present estimates for the expected Sunyaev-Zeldovich effect (SZE) signal from these clusters as specific predictions for upcoming observations by ACT, the South Pole Telescope and Atacama Pathfinder Experiment.



قيم البحث

اقرأ أيضاً

176 - Felipe Menanteau 2010
We present a catalog of 105 rich and massive ($M>3times10^{14}M_{sun}$) optically-selected clusters of galaxies extracted from 70 square-degrees of public archival griz imaging from the Blanco 4-m telescope acquired over 45 nights between 2005 and 20 07. We use the clusters optically-derived properties to estimate photometric redshifts, optical luminosities, richness, and masses. We complement the optical measurements with archival XMM-Newton and ROSAT X-ray data which provide additional luminosity and mass constraints on a modest fraction of the cluster sample. Two of our clusters show clear evidence for central lensing arcs; one of these has a spectacular large-diameter, nearly-complete Einstein Ring surrounding the brightest cluster galaxy. A strong motivation for this study is to identify the massive clusters that are expected to display prominent signals from the Sunyaev-Zeldovich Effect (SZE) and therefore be detected in the wide-area mm-band surveys being conducted by both the Atacama Cosmology Telescope and the South Pole Telescope. The optical sample presented here will be useful for verifying new SZE cluster candidates from these surveys, for testing the cluster selection function, and for stacking analyzes of the SZE data.
71 - C. Lynch , T. Murphy , V. Ravi 2016
We report the results of a volume-limited survey using the Australia Telescope Compact Array to search for transient and quiescent radio emission from 15 southern hemisphere ultracool dwarfs. We detect radio emission from 2MASSW J0004348-404405 incre asing the number of radio loud ultracool dwarfs to 22. We also observe radio emission from 2MASS J10481463-3956062 and 2MASSI J0339352-352544, two sources with previous radio detections. The radio emission from the three detected sources shows no variability or flare emission. Modelling this quiescent emission we find that it is consistent with optically thin gyrosynchrotron emission from a magnetosphere with an emitting region radius of (1 - 2)$R_*$, magnetic field inclination 20$^{circ}$ - 80$^{circ}$, field strength $sim$10 - 200 G, and power-law electron density $sim$10$^4$ - 10$^8$ cm$^{-3}$. Additionally, we place upper limits on four ultracool dwarfs with no previous radio observations. This increases the number of ultracool dwarfs studied at radio frequencies to 222. Analysing general trends of the radio emission for this sample of 15 sources, we find that the radio activity increases for later spectral types and more rapidly rotating objects. Furthermore, comparing the ratio of the radio to X-ray luminosities for these sources, we find 2MASS J10481463-3956062 and 2MASSI J0339352-352544 violate the Guedel-Benz relation by more than two orders of magnitude.
The census of Galactic HII regions is vastly incomplete in the Southern sky. We use the Australia Telescope Compact Array (ATCA) to observe 4-10 GHz radio continuum and hydrogen radio recombination line (RRL) emission from candidate HII regions in th e Galactic zone 259 deg < l < 344 deg, |b| < 4 deg. In this first data release, we target the brightest HII region candidates and observe 282 fields in the direction of at least one previously-known or candidate HII region. We detect radio continuum emission and RRL emission in 275 (97.5%) and 258 (91.5%) of these fields, respectively. We catalog the ~7 GHz radio continuum peak flux densities and positions of 80 previously-known and 298 candidate HII regions. After averaging ~18 RRL transitions, we detect 77 RRL velocity components towards 76 previously-known HII regions and 267 RRL velocity components towards 256 HII region candidates. The discovery of RRL emission from these nebulae increases the number of known Galactic HII regions in the surveyed zone by 82%, to 568 nebulae. In the fourth quadrant we discover 50 RRLs with positive velocities, placing those sources outside the Solar circle. Including the pilot survey, the SHRDS has now discovered 295 Galactic HII regions. In the next data release we expect to add ~200 fainter and more distant nebulae.
We are conducting a survey for pulsars and transients using the Giant Metrewave Radio Telescope (GMRT). The GMRT High Resolution Southern Sky (GHRSS) survey is an off-Galactic-plane (|b|>5) survey in the declination range -40 deg to -54 deg at 322 MH z. With the high time (up to 30.72 micro-sec) and frequency (up to 0.016275 MHz) resolution observing modes, the 5-sigma detection limit is 0.5 mJy for a 2 ms pulsar with 10% duty cycle at 322 MHz. Total GHRSS sky coverage of 2866 square-deg, will result from 1953 pointing, each covering 1.8 square-deg. The 10-sigma detection limit for a 5 milli-sec transient burst is 1.6 Jy for the GHRSS survey. In addition, the GHRSS survey can reveal transient events like rotating radio transients or fast radio bursts. With 35% of the survey completed (i.e. 1000 square-deg), we report the discovery of 10 pulsars, one of which is a millisecond pulsar (MSP), one of the highest pulsar per square degree discovery rates for any off-Galactic plane survey. We re-detected 23 known in-beam pulsars. Utilising the imaging capability of the GMRT we also localised 4 of the GHRSS pulsars (including the MSP) in the gated image plane within +/- 10 arc-second. We demonstrated rapid convergence in pulsar timing with a more precise position than is possible with single dish discoveries. We also exhibited that we can localise the brightest transient sources with simultaneously obtained lower time resolution imaging data, demonstrating a technique that may have application in the SKA.
We present the optical and X-ray properties of four clusters recently discovered by the South Pole Telescope (SPT) using the Sunyaev-Zeldovich effect (SZE). The four clusters are located in one of the common survey areas of the southern sky that is a lso being targeted by the Atacama Cosmology Telescope (ACT) and imaged by the CTIO Blanco 4-m telescope. Based on publicly available griz optical images and XMM-Newton and ROSAT X-ray observations we analyse the physical properties of these clusters and obtain photometric redshifts, luminosities, richness and mass estimates. Each cluster contains a central elliptical whose luminosity is consistent with SDSS cluster studies. Our mass estimates are well above the nominal detection limit of SPT and ACT; the new SZE clusters are very likely massive systems with M>~5x10^14 M_sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا