ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical Properties of Four SZE-Selected Galaxy Clusters in the Southern Cosmology Survey

61   0   0.0 ( 0 )
 نشر من قبل Felipe Menanteau
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the optical and X-ray properties of four clusters recently discovered by the South Pole Telescope (SPT) using the Sunyaev-Zeldovich effect (SZE). The four clusters are located in one of the common survey areas of the southern sky that is also being targeted by the Atacama Cosmology Telescope (ACT) and imaged by the CTIO Blanco 4-m telescope. Based on publicly available griz optical images and XMM-Newton and ROSAT X-ray observations we analyse the physical properties of these clusters and obtain photometric redshifts, luminosities, richness and mass estimates. Each cluster contains a central elliptical whose luminosity is consistent with SDSS cluster studies. Our mass estimates are well above the nominal detection limit of SPT and ACT; the new SZE clusters are very likely massive systems with M>~5x10^14 M_sun.

قيم البحث

اقرأ أيضاً

132 - Felipe Menanteau 2010
We present a catalog of 105 rich and massive ($M>3times10^{14}M_{sun}$) optically-selected clusters of galaxies extracted from 70 square-degrees of public archival griz imaging from the Blanco 4-m telescope acquired over 45 nights between 2005 and 20 07. We use the clusters optically-derived properties to estimate photometric redshifts, optical luminosities, richness, and masses. We complement the optical measurements with archival XMM-Newton and ROSAT X-ray data which provide additional luminosity and mass constraints on a modest fraction of the cluster sample. Two of our clusters show clear evidence for central lensing arcs; one of these has a spectacular large-diameter, nearly-complete Einstein Ring surrounding the brightest cluster galaxy. A strong motivation for this study is to identify the massive clusters that are expected to display prominent signals from the Sunyaev-Zeldovich Effect (SZE) and therefore be detected in the wide-area mm-band surveys being conducted by both the Atacama Cosmology Telescope and the South Pole Telescope. The optical sample presented here will be useful for verifying new SZE cluster candidates from these surveys, for testing the cluster selection function, and for stacking analyzes of the SZE data.
136 - R. Capasso , A. Saro , J. J. Mohr 2017
The galaxy phase-space distribution in galaxy clusters provides insights into the formation and evolution of cluster galaxies, and it can also be used to measure cluster mass profiles. We present a dynamical study based on $sim$3000 passive, non-emis sion line cluster galaxies drawn from 110 galaxy clusters. The galaxy clusters were selected using the Sunyaev-Zeldovich effect (SZE) in the 2500~deg$^2$ SPT-SZ survey and cover the redshift range $0.2 < z < 1.3$. We model the clusters using the Jeans equation, while adopting NFW mass profiles and a broad range of velocity dispersion anisotropy profiles. The data prefer velocity dispersion anisotropy profiles that are approximately isotropic near the center and increasingly radial toward the cluster virial radius, and this is true for all redshifts and masses we study. The pseudo-phase-space density profile of the passive galaxies is consistent with expectations for dark matter particles and subhalos from cosmological $N$-body simulations. The dynamical mass constraints are in good agreement with external mass estimates of the SPT cluster sample from either weak lensing, velocity dispersions, or X-ray $Y_X$ measurements. However, the dynamical masses are lower (at the 2.2$sigma$ level) when compared to the mass calibration favored when fitting the SPT cluster data to a $Lambda$CDM model with external cosmological priors, including CMB anisotropy data from Planck. The discrepancy grows with redshift, where in the highest redshift bin the ratio of dynamical to SPT+Planck masses is $eta=0.63^{+0.13}_{-0.08}pm0.06$ (statistical and systematic), corresponding to a $2.6sigma$ discrepancy.
73 - John F. Wu 2017
We present new Herschel observations of four massive, Sunyaev-Zeldovich Effect (SZE)-selected clusters at $0.3 leq z leq 1.1$, two of which have also been observed with ALMA. We detect 19 Herschel/PACS counterparts to spectroscopically confirmed clus ter members, five of which have redshifts determined via CO($4-3$) and [CI](${}^3P_1 - {}^3P_0$) lines. The mean [CI]/CO line ratio is $0.19 pm 0.07$ in brightness temperature units, consistent with previous results for field samples. We do not detect significant stacked ALMA dust continuum or spectral line emission, implying upper limits on mean interstellar medium (H$_2$ + HI) and molecular gas masses. An apparent anticorrelation of $L_{IR}$ with clustercentric radius is driven by the tight relation between star formation rate and stellar mass. We find average specific star formation rate log(sSFR/yr$^{-1}$) = -10.36, which is below the SFR$-M_*$ correlation measured for field galaxies at similar redshifts. The fraction of infrared-bright galaxies (IRBGs; $log (L_{IR}/L_odot) > 10.6$) per cluster and average sSFR rise significantly with redshift. For CO detections, we find $f_{gas} sim 0.2$, comparable to those of field galaxies, and gas depletion timescales of about 2 Gyr. We use radio observations to distinguish active galactic nuclei (AGNs) from star-forming galaxies. At least four of our 19 Herschel cluster members have $q_{IR} < 1.8$, implying an AGN fraction $f_{AGN} gtrsim 0.2$ for our PACS-selected sample.
We report on twenty-three clusters detected blindly as Sunyaev-Zeldovich (SZ) decrements in a 148 GHz, 455 square-degree map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL J0102-4915, with a redshift of 0.75 (photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure. The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6x10^14 solar masses referenced to the cluster volume characterized by five hundred times the critical density. The Compton y -- X-ray luminosity mass comparison for the eleven best detected clusters visually agrees with both self-similar and non-adiabatic, simulation-derived scaling laws.
We present follow-up observations with the Sunyaev-Zeldovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+001 6. ACT-CL J0022-0036 is a newly-discovered, massive (10^15 Msun), high-redshift (z=0.81) cluster revealed by ACT through the Sunyaev-Zeldovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACTs frequency, we estimate that point sources could be contaminating the SZE decrement at the <= 20% level for some fraction of clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا