ترغب بنشر مسار تعليمي؟ اضغط هنا

Importance of the crystalline symmetry in the piezoelectric properties of (K0.44+xNa0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3+x/2 lead-free ceramics

176   0   0.0 ( 0 )
 نشر من قبل Fernando Rubio Marcos
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lead-free ceramics (K0.44+xNa0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3+x/2 (x=-0,06) were prepared by conventional solid state sintering. The results indicate a correlation between crystalline symmetry and electrical properties. Higher tetragonality was observed in samples with higher piezoelectric response. As the tetragonality increase the presence of polymorphic phase decrease associated with a reduction of the relaxor behaviour response. The ceramics with c/a = 1.011 ratio exhibit enhanced electrical properties. The Raman spectroscopy showed a certain asymmetry in the paraelectric phase above the Curie temperature Tc that provokes retention of the polarization. The crystalline symmetry plays a crucial role in the piezoelectric properties of the system.

قيم البحث

اقرأ أيضاً

We report here the structure and dielectric studies on a new lead free (1-x)BaTiO3-xBi(Mg1/2Zr1/2)O3 solid solution to explore the morphotropic phase boundary. The powder x-ray diffraction studies on (1-x)BaTiO3-xBi(Mg1/2Zr1/2)O3 solid solution sugge sts that structure is tetragonal (P4mm) for the composition with x=0.05 and cubic for the composition with x=0.30 and 0.40. Morphotropic phase boundary is observed in the composition range 0.10<x<0.30, where phase coexistence is observed and composition dependence of room temperature permittivity shows a peak. High temperature dielectric measurement for the composition with x=0.20 exhibits diffuse phase transition having peak temperature around ~ 396 K at 10 kHz. The diffuseness parameter ({gamma}) was obtained to be 1.68 for composition with x=0.20.
The temperature dependence of elastic, dielectric, and piezoelectric properties of (65-x)Pb(Mg1/3Nb2/3)O3-xBaTiO335-PbTiO3 ceramics with x=0, 1, 2, 3, and 4 was investigated. Compound with x=2 was found to exhibit a large piezoelectric response (d31= -170 pC/N, d33=530 pC/N at 300 K). Particularly, its d31 value was nearly a constant over a temperature range from 185 to 360 K. A broad ferroelectric phase transition tuned by BaTiO3 doping was deduced from the dielectric constant, elastic compliance constant and Raman spectra. The temperature-stable piezoelectric response was attributed to the counter-balance of contributions from the dielectric and elastic responses.
Single crystals of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) poled along [001] were investigated by dielectric, x-ray, and polarized light (PLM) and piezo-force microscopy (PFM) methods. PLM revealed {100} macro-domain plates that formed after poling, whose size increased on heating between room temperature and a rhombohedral rightarrow tetragonal phase transition, above which point a break-up of the macro-domain plates was observed. Corresponding PFM studies demonstrated that poling reduced the size of stripe-like domains that were internal to the macro-domain plates, whose size also increased on heating to TR-T. The temperature dependence of both the size of the macro-domain plates and internal sub-domains followed the Arrhenius relation with the activation energy of 0.4-0.5eV. The coercive field displays an abnormal increase on heating below TR-T, different than that for PMN-PT. The anomalously increased coercive field can be ascribed to the Arrhenius-type domain growth, indicating a simple thermally activated process and an important role of hierarchial domains in the improved performance of PIN-PMN-PT.
We report on the discovery of a lead-free morphotropic phase boundary in Sm doped BiFeO3 with a simple perovskite structure using the combinatorial thin film strategy. The boundary is a rhombohedral to pseudo-orthorhombic structural transition which exhibits a ferroelectric (FE) to antiferroelectric (AFE) transition at approximately Bi0.86Sm0.14FeO3 with dielectric constant and out-of-plane piezoelectric coefficient comparable to those of epitaxial (001) oriented Pb(Zr,Ti)O3 (PZT) thin films at the MPB. The discovered composition may be a strong candidate of a Pb-free piezoelectric replacement of PZT.
We show that the piezoelectric effect that describes the emergence of an electric field in response to a crystal deformation in III-V semiconductors such as GaAs and InAs has strong contributions from second-order effects that have been neglected so far. We calculate the second-order piezoelectric tensors using density functional theory and obtain the piezoelectric field for [111]-oriented In$_x$Ga$_{1-x}$As quantum wells of realistic dimensions and concentration $x$. We find that the linear and the quadratic piezoelectric coefficients have the opposite effect on the field, and for large strains the quadratic terms even dominate. Thus, the piezoelectric field turns out to be a rare example of a physical quantity for which the first- and second-order contributions are of comparable magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا