ﻻ يوجد ملخص باللغة العربية
Despite many studies of the star formation in spiral galaxies, a complete and coherent understanding of the physical processes that regulate the birth of stars has not yet been achieved, nor a unanimous consent was reached, despite the many attempts, on the effects of the environment on the star formation in galaxies member of rich clusters. We focus on the local and global Schmidt law and we investigate how cluster galaxies have their star formation activity perturbed. We collect multifrequency imaging for a sample of spiral galaxies, member of the Virgo cluster and of the local field; we compute the surface density profiles for the young and for the bulk of the stellar components, for the molecular and for the atomic gas. Our analysis shows that the bulk of the star formation correlates with the molecular gas, but the atomic gas is important or even crucial in supporting the star formation activity in the outer part of the disks. Moreover, we show that cluster members which suffer from a moderate HI removal have their molecular component and their SFR quenched, while highly perturbed galaxies show an additional truncation in their star forming disks. Our results are consistent with a model in which the atomic hydrogen is the fundamental fuel for the star formation, either directly or indirectly through the molecular phase; therefore galaxies whose HI reservoirs have been depleted suffer from starvation or even from truncation of their star formation activity.
Using the far-infrared emission, as observed by the Herschel Virgo Cluster Survey (HeViCS), and the integrated HI and CO brightness, we infer the dust and total gas mass for a magnitude limited sample of 35 metal rich spiral galaxies in Virgo. The CO
Observations have revealed that disturbances in the cold neutral atomic hydrogen (HI) in galaxies are ubiquitous, but the reasons for these disturbances remain unclear. While some studies suggest that asymmetries in integrated HI spectra (global HI a
We present $^{12}$CO(1-0) and $^{12}$CO(2-1) observations of a sample of 20 star-forming dwarfs selected from the Herschel Virgo Cluster Survey, with oxygen abundances ranging from 12 + log(O/H) ~ 8.1 to 8.8. CO emission is observed in ten galaxies a
We present large-area maps of the CO J=3-2 emission obtained at the James Clerk Maxwell Telescope for four spiral galaxies in the Virgo Cluster. We combine these data with published CO J=1-0, 24 micron, and Halpha images to measure the CO line ratios
Using a representative sample of 14 star-forming dwarf galaxies in the local Universe, we show the existence of a spaxel-to-spaxel anti-correlation between the index N2 (log([NII]6583/Halpha)) and the Halpha flux. These two quantities are commonly em