ﻻ يوجد ملخص باللغة العربية
We investigate the effect of the magnetic anisotropy ($K_z$) on the static and dynamic properties of magnetic vortices in small disks. Our micromagnetic calculations reveal that for a range of $K_z$ there is an enlargement of the vortex core. We analyze the influence of $K_z$ on the dynamics of the vortex core magnetization reversal under the excitation of a pulsed field. The presence of $K_z$, which leads to better resolved vortex structures, allows us to discuss in more details the role played by the in-plane and perpendicular components of the gyrotropic field during the vortex-antivortex nucleation and annihilation.
Recently we have demonstrated the presence of spin-orbit toque in FeMn/Pt multilayers which, in combination with the anisotropy field, is able to rotate its magnetization consecutively from 0o to 360o without any external field. Here, we report on an
In this work we address the interplay between two phenomena which are signatures of the out-of-equilibrium state in phase separated manganites: irreversibility against thermal cycling and aging/rejuvenation process. The sample investigated is La0.5Ca
Model of quantum depinning of magnetic vortex cores from line defects in a disk geometry and under the application of an in-plane magnetic field has been developed within the framework of the Caldeira-Leggett theory. The corresponding instanton solut
Single crystals of CrSbSe$_3$, a structurally pseudo-one-dimensional ferromagnetic semiconductor, were grown using a high-temperature solution growth technique and were characterized by x-ray diffraction, anisotropic, temperature- and field-dependent
The algorithm for the DPD fluid, the dynamics of which is conceptually a combination of molecular dynamics, Brownian dynamics and lattice gas automata, is designed for simulating rheological properties of complex fluids on hydrodynamic time scales. T