ﻻ يوجد ملخص باللغة العربية
Two-photon anti-bunching at a beamsplitter is only possible if the photons are entangled in a specific state, anti-symmetric in the spatial modes. Thus, observation of anti-bunching is an indication of entanglement in a degree of freedom which might not be easily accessible in an experiment. We experimentally demonstrate this concept in the case of the interference of two frequency entangled photons with continuous frequency detunings. The principle of anti-symmetrisation of the spatial part of a wavefunction and subsequent detection of hidden entanglement via anti-bunching at a beamsplitter may facilitate the observation of entanglement in other systems, like atomic ensembles or Bose-Einstein condensates. The analogue for fermionic systems would be to observe bunching.
We consider Bell tests in which the distant observers can perform local filtering before testing a Bell inequality. Notably, in this setup, certain entangled states admitting a local hidden variable model in the standard Bell scenario can nevertheles
We discuss how introducing an equilibrium frame, in which a given Hamiltonian has balanced loss and gain terms, can reveal PT symmetry hidden in non-Hermitian Hamiltonians of dissipative systems. Passive PT-symmetric Hamiltonians, in which only loss
Dissipative entanglement generation protocols embrace environmental interactions in order to generate long-lived entangled states. In this letter, we report on the anti-bunching dynamics for a pair of actively driven quantum emitters coupled to a sha
It is known that entanglement dynamics of two noninteracting qubits, locally subjected to classical environments, may exhibit revivals. A simple explanation of this phenomenon may be provided by using the concept of hidden entanglement, which signals
Entanglement dynamics of two noninteracting qubits, locally affected by random telegraph noise at pure dephasing, exhibits revivals. These revivals are not due to the action of any nonlocal operation, thus their occurrence may appear paradoxical sinc