ﻻ يوجد ملخص باللغة العربية
We present the accurate measurement of the frequency of the $7S-7P$ laser-trapping transition for three francium isotopes. Our approach is based on an interferometric comparison to deduce the unknown laser frequency from a secondary laser frequency-standard. After careful investigation of systematics, with samples of about 100 atoms the final accuracy reaches 8 MHz, an order of magnitude better than the best previous measurement for $^{210}$Fr, and opens the way to improved tests of the theoretical computation of Fr atomic structure.
High-power and narrow-linewidth laser light is a vital tool for atomic physics, being used for example in laser cooling and trapping and precision spectroscopy. Here we produce Watt-level laser radiation at 457.49 nm and 460.86 nm of respective relev
About 300 experiments have tried to determine the value of the Newtonian gravitational constant, G, so far, but large discrepancies in the results have made it impossible to know its value precisely. The weakness of the gravitational interaction and
Weak interactions within a nucleus generate a nuclear spin dependent parity violating electromagnetic moment; the anapole moment. In heavy nuclei, the anapole moment is the dominant contribution to spin-dependent atomic parity violation. We analyze a
We present a modular rack-mounted laser system for the cooling and manipulation of neutral rubidium atoms which has been developed for a portable gravimeter based on atom interferometry that will be capable of performing high precision gravity measur
The cesium 6S_1/2 scalar dipole polarizability alpha_0 has been determined from the time-of-flight of laser cooled and launched cesium atoms traveling through an electric field. We find alpha_0 = 6.611+-0.009 x 10^-39 C m^2/V= 59.42+-0.08 x 10^-24 cm