ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement method for the nuclear anapole moment of laser trapped alkali atoms

59   0   0.0 ( 0 )
 نشر من قبل Eduardo Gomez
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Gomez




اسأل ChatGPT حول البحث

Weak interactions within a nucleus generate a nuclear spin dependent parity violating electromagnetic moment; the anapole moment. In heavy nuclei, the anapole moment is the dominant contribution to spin-dependent atomic parity violation. We analyze a method to measure the nuclear anapole moment through the electric dipole transition it induces between hyperfine states of the ground level. The method requires tight confinement of the atoms to position them at the anti-node of a standing wave driving the anapole-induced E1 transiton. We explore the necessary limits in the number of atoms, excitation fields, trap type, interrogation method, and systematic tests necessary for such measurements in francium, the heaviest alkali.

قيم البحث

اقرأ أيضاً

In the presence of P-violating interactions, the exchange of vector bosons between electrons and nucleons induces parity-nonconserving (PNC) effects in atoms and molecules, while the exchange of vector bosons between nucleons induces anapole moments of nuclei. We perform calculations of such vector-mediated PNC effects in Cs, Ba$^+$, Yb, Tl, Fr and Ra$^+$ using the same relativistic many-body approaches as in earlier calculations of standard-model PNC effects, but with the long-range operator of the weak interaction. We calculate nuclear anapole moments due to vector boson exchange using a simple nuclear model. From measured and predicted (within the standard model) values for the PNC amplitudes in Cs, Yb and Tl, as well as the nuclear anapole moment of $^{133}$Cs, we constrain the P-violating vector-pseudovector nucleon-electron and nucleon-proton interactions mediated by a generic vector boson of arbitrary mass. Our limits improve on existing bounds from other experiments by many orders of magnitude over a very large range of vector-boson masses.
We report the measurement of collision rate coefficient for collisions between ultracold Cs atoms and low energy Cs+ ions. The experiments are performed in a hybrid trap consisting of a magneto-optical trap (MOT) for Cs atoms and a Paul trap for Cs+ ions. The ion-atom collisions impart kinetic energy to the ultracold Cs atoms resulting in their escape from the shallow MOT and, therefore, in a reduction in the number of Cs atoms in the MOT. By monitoring, using fluorescence measurements, the Cs atom number and the MOT loading dynamics and then fitting the data to a rate equation model, the ion-atom collision rate is derived. The Cs-Cs+ collision rate coefficient $9.3(pm0.4)(pm1.2)(pm3.5) times 10^{-14}$ m$^{3}$s$^{-1}$, measured for an ion distribution with most probable collision energy of 95 meV ($approx k_{B}.1100$ K), is in fair agreement with theoretical calculations. As an intermediate step, we also determine the photoionization cross section of Cs $6P_{3/2}$ atoms at 473 nm wavelength to be $2.28 (pm 0.33) times 10^{-21}$ m$^{2}$.
We present high accuracy relativistic coupled cluster calculations of the P-odd interaction coefficient $W_A$ describing the nuclear anapole moment effect on the molecular electronic structure. The molecule under study, BaF, is considered a promising candidate for the measurement of the nuclear anapole moment, and the preparation for the experiment is now underway [Altunas et al., Phys. Rev. Lett. 120, 142501 (2018)]. Influence of various computational parameters (size of the basis set, treatment of relativistic effects, and treatment of electron correlation) on the calculated $W_A$ coefficient is investigated and a recommended value of 147.7 Hz with an estimated uncertainty of 1.5% is proposed.
We investigate how the nonlinearity of the Zeeman shift for strong magnetic fields affects the dynamics of rf field induced evaporative cooling in magnetic traps. We demonstrate for the 87-Rb and 23-Na F=2 trapping states with wave packet simulations how the cooling stops when the rf field frequency goes below a certain limit (for the 85-Rb F=2 trapping state the problem does not appear). We examine the applicability of semiclassical models for the strong field case as an extension of our previous work [Phys. Rev. A 58, 3983 (1998)]. Our results verify many of the aspects observed in a recent $^{87}$Rb experiment [Phys. Rev. A 60, R1759 (1999)].
We investigate a solid-state, reversible, alkali-ion battery (AIB) capable of regulating the density of alkali atoms in a vacuum system used for the production of laser-cooled atoms. The cold-atom sample can be used with in-vacuum chronoamperometry a s a diagnostic for the voltage-controlled electrochemical reaction that sources or sinks alkali atoms into the vapor. In a combined reaction-diffusion-limited regime, we show that the number of laser-cooled atoms in a magneto-optical trap can be increased both by initially loading the AIB from the vapor for longer, and by using higher voltages across the AIB when atoms are subsequently sourced back into the vapor. The time constants associated with the change in atom number in response to a change in AIB voltage are in the range of 0.5 s - 40 s. The AIB alkali reservoir is demonstrated to survive oxidization during atmospheric exposure, simplifying reservoir loading prior to vacuum implementation as a replacement for traditional resistively-heated dispensers. The AIB capabilities may provide an improved atom number stability in next-generation atomic clocks and sensors, while also facilitating fast loading and increased interrogation times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا